A comparison of two statistical methods for spatial interpolation of Canadian monthly mean climate data

均方误差 仰角(弹道) 降水 地形 多元插值 反距离权重法 环境科学 插值(计算机图形学) 平均辐射温度 空间生态学 统计 气候学 自然地理学 气候变化 气象学 数学 地理 地图学 地质学 计算机科学 生态学 动画 计算机图形学(图像) 双线性插值 海洋学 几何学 生物
作者
David T. Price,Daniel W. McKenney,Ian A. Nalder,Michael F. Hutchinson,Jennifer Kesteven
出处
期刊:Agricultural and Forest Meteorology [Elsevier]
卷期号:101 (2-3): 81-94 被引量:389
标识
DOI:10.1016/s0168-1923(99)00169-0
摘要

Two methods for elevation-dependent spatial interpolation of climatic data from sparse weather station networks were compared. Thirty-year monthly mean minimum and maximum temperature and precipitation data from regions in western and eastern Canada were interpolated using thin-plate smoothing splines (ANUSPLIN) and a statistical method termed ‘Gradient plus Inverse-Distance-Squared’ (GIDS). Data were withheld from approximately 50 stations in each region and both methods were then used to predict the monthly mean values for each climatic variable at those locations. The comparison revealed lower root mean square error (RMSE) for ANUSPLIN in 70 out of 72 months (three variables for 12 months for both regions). Higher RMSE for GIDS was caused by more frequent occurrence of extreme errors. This result had important implications for surfaces generated using the two methods. Both interpolators performed best in the eastern (Ontario/Québec) region where topographic and climatic gradients are smoother, whereas predicting precipitation in the west (British Columbia/Alberta) was most difficult. In the latter case, ANUSPLIN clearly produced better results for most months. GIDS has certain advantages in being easy to implement and understand, hence providing a useful baseline to compare with more sophisticated methods. The significance of the errors for any method should be considered in light of the planned applications (e.g., in extensive, uniform terrain with low relief, differences may not be important).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sweetbearm应助寒涛先生采纳,获得10
刚刚
wanci应助YY采纳,获得10
1秒前
1秒前
2秒前
2秒前
3秒前
HC完成签到 ,获得积分10
4秒前
姚姚的赵赵完成签到,获得积分10
4秒前
JamesPei应助大豪子采纳,获得30
5秒前
jy发布了新的文献求助10
5秒前
5秒前
陆靖易发布了新的文献求助10
5秒前
LQW完成签到,获得积分20
6秒前
7秒前
plant完成签到,获得积分10
7秒前
lyt完成签到,获得积分10
7秒前
8秒前
9秒前
敏感网络完成签到,获得积分20
10秒前
kh453发布了新的文献求助10
10秒前
10秒前
子爵木完成签到 ,获得积分10
10秒前
HC发布了新的文献求助30
11秒前
无限鞅发布了新的文献求助10
11秒前
SherlockLiu完成签到,获得积分20
11秒前
12秒前
吴岳发布了新的文献求助10
13秒前
陆靖易完成签到,获得积分10
13秒前
15秒前
Bella完成签到 ,获得积分10
15秒前
yhl发布了新的文献求助10
16秒前
17秒前
震动的乐天完成签到,获得积分10
18秒前
19秒前
20秒前
Hello应助xuanxuan采纳,获得10
21秒前
村长热爱美丽完成签到 ,获得积分10
21秒前
一衣完成签到,获得积分20
21秒前
21秒前
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808