We report the observation of stimulated emission and mirrorless lasing in pure cholesteric liquid crystals. The lasing action is attributed to the combination of the fluorescence and the distributed feedback that are due to the inherent periodic structure of the liquid crystal. If the reflection band matches the intrinsic emission of the cholesteric liquid crystal, the crystal becomes a natural laser material, which will self-lase, without any optical elements or the addition of dyes, under picosecond excitation at 355 nm. Samples have been made to lase at different wavelengths in the near UV by shifting of the edge of the reflection band in the range of 385-405 nm. Typical linewidths observed are of the order of 0.5 nm.