Data Mining of the Public Version of the FDA Adverse Event Reporting System

不良事件报告系统 药物警戒 医学 不利影响 事件(粒子物理) 优势比 数据挖掘 药理学 计算机科学 内科学 量子力学 物理
作者
Toshiyuki Sakaeda,Akiko Tamon,Kaori Kadoyama,Yasushi Okuno
出处
期刊:International Journal of Medical Sciences [Ivyspring International Publisher]
卷期号:10 (7): 796-803 被引量:580
标识
DOI:10.7150/ijms.6048
摘要

The US Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS, formerly AERS) is a database that contains information on adverse event and medication error reports submitted to the FDA.Besides those from manufacturers, reports can be submitted from health care professionals and the public.The original system was started in 1969, but since the last major revision in 1997, reporting has markedly increased.Data mining algorithms have been developed for the quantitative detection of signals from such a large database, where a signal means a statistical association between a drug and an adverse event or a drug-associated adverse event, including the proportional reporting ratio (PRR), the reporting odds ratio (ROR), the information component (IC), and the empirical Bayes geometric mean (EBGM).A survey of our previous reports suggested that the ROR provided the highest number of signals, and the EBGM the lowest.Additionally, an analysis of warfarin-, aspirin-and clopidogrel-associated adverse events suggested that all EBGM-based signals were included in the PRR-based signals, and also in the IC-or ROR-based ones, and that the PRR-and IC-based signals were in the ROR-based ones.In this article, the latest information on this area is summarized for future pharmacoepidemiological studies and/or pharmacovigilance analyses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助蘑菇采纳,获得10
刚刚
papa完成签到 ,获得积分10
1秒前
1秒前
sss发布了新的文献求助10
1秒前
chinning发布了新的文献求助10
1秒前
小胖鱼发布了新的文献求助10
2秒前
dzdzn关注了科研通微信公众号
2秒前
共享精神应助Zhaorf采纳,获得10
3秒前
3秒前
3秒前
3秒前
4秒前
4秒前
peikyang发布了新的文献求助10
4秒前
藤原拓海完成签到,获得积分10
4秒前
π1完成签到 ,获得积分10
4秒前
zhangqi发布了新的文献求助10
4秒前
CCL应助wjj采纳,获得20
5秒前
5秒前
单于天宇完成签到,获得积分10
5秒前
5秒前
畅快的南风完成签到,获得积分10
6秒前
猪猪hero完成签到,获得积分10
6秒前
要减肥冰菱完成签到,获得积分10
6秒前
肖静茹完成签到,获得积分20
6秒前
情怀应助啾啾咪咪采纳,获得10
7秒前
奥里给完成签到 ,获得积分10
7秒前
DQ8733完成签到,获得积分10
7秒前
AAAAAAAAAAA发布了新的文献求助10
8秒前
8秒前
鱼与树发布了新的文献求助10
8秒前
sun完成签到,获得积分20
8秒前
lbw完成签到 ,获得积分10
9秒前
领导范儿应助朴素篮球采纳,获得10
9秒前
小刘不笨发布了新的文献求助10
9秒前
9秒前
大方的雪曼完成签到,获得积分10
9秒前
詭詐应助西洲采纳,获得10
9秒前
10秒前
zhangting发布了新的文献求助10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678