清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Convection and mixing in magma chambers

岩浆房 对流 地质学 火成岩 岩浆 火成岩分异 分层(种子) 岩石学 地球物理学 分步结晶(地质学) 混合(物理) 矿物学 机械 地幔(地质学) 地球化学 火山 物理 量子力学 种子休眠 发芽 植物 休眠 生物
作者
J. S. Turner,Ian H. Campbell
出处
期刊:Earth-Science Reviews [Elsevier BV]
卷期号:23 (4): 255-352 被引量:235
标识
DOI:10.1016/0012-8252(86)90015-2
摘要

This paper reviews advances made during the last seven years in the application of fluid dynamics to problems of igneous petrology, with emphasis on the laboratory work with which the authors have been particularly involved. Attention is focused on processes in magma chambers which produce diversity in igneous rocks, such as fractional crystallization, assimilation and magma mixing. Chamber geometry, and variations in the density and viscosity of the magma within it, are shown to play a major role in determining the dynamical behaviour and the composition of the erupted or solidified products. Various convective processes are first reviewed, and in particular the phenomenon of double-diffusive convection. Two types of double-diffusive interfaces between layers of different composition and temperature are likely to occur in magma chambers. A diffusive interface forms when a layer of hot dense magma is overlain by cooler less dense magma. Heat is transported between the layers faster than composition, driving convection in both layers and maintaining a sharp interface between them. If a layer of hot slightly less dense magma overlies a layer of cooler, denser but compositionally lighter magma, a finger interface forms between them, and compositional differences are transported downwards faster than heat (when each is expressed in terms of the corresponding density changes). Processes leading to the establishment of density, compositional and thermal gradients or steps during the filling of a magma chamber are considered next. The stratification produced, and the extent of mixing between the inflowing and resident magmas, are shown to depend on the flow rate and on the relation between the densities and viscosities of the two components. Slow dense inputs of magma may mix very little with resident magma of comparable viscosity as they spread across the floor of the chamber. A similar pulse injected with high upward momentum forms a turbulent “fountain”, which is a very efficient mechanism for magma mixing, as is a turbulent plume of less dense magma rising through the host magma to the top of the chamber. The form of convection in the filled magma chamber is controlled by the shape and size of the chamber, the viscosity of the magma (through the Rayleigh number which is usually high in the early stages of cooling), and by processes at the boundary which produce lighter or denser fluid than that in the interior of the chamber. Compositional convection due to fluid released by crystallization often dominates over thermal convection. If crystallization at the bottom of a funnel-shaped chamber releases a light magma, this convects away from the floor, causing turbulent convection which tends to homogenize the overlying melt. If the magma released is dense, it flows down the sloping floor and stratifies the magma at the base of the chamber. Convection driven by crystallization in an inverted funnel has the reverse effect, e.g. dense fluid released at the sloping roof now has a homogenizing influence. Assimilation of wall rocks can also lead to identical dynamical effects and thus to zoning in magma chambers. Melting of a light roof, for instance, can produce a layer of cool felsic magma overlying the hotter more basic magma in the lower part of the chamber, with a diffusive interface between them. Assimilation has also been discussed for other geometries: assimilation of the walls of dykes, sills and lava flows can occur when the flow is hot and turbulent, whereas if the flow is laminar the magma will chill against the adjacent rocks and protect them from assimilation. When the magma in a chamber is layered, crystallization can cause the composition and density to change in several ways which may lead to mixing. A crystallizing lower layer of hot dense magma can evolve till it has the density of the magma above it, causing sudden overturning and thorough mixing. On the other hand, with a much more viscous layer above, light fluid is released continuously during crystallization and rises to the top of the chamber with little mixing. Overturning of a gas-rich mafic lower layer into a cooler silicic layer can cause a sudden quenching, with the rapid release of gas which could trigger an explosive eruption. Mixing can also occur during eruption, as two layers are drawn up simultaneously from a stratified chamber when a critical flow velocity is exceeded, and they then mix in the outlet vent. Laboratory experiments suggest, however, that magma mixing is inhibited by large viscosity differences, both during the filling and emptying of a magma chamber. Scaling these results to magmas indicates that a basaltic magma can flow into the bottom of a chamber containing rhyolite with little or no mixing between them, and that these two magma types can also flow out through the same exit vent with limited mixing. Each of the phenomena discussed in this review has been studied, at least in a qualitative way, using laboratory experiments to identify and understand a significant physical process occurring in magma chambers. The field of geological fluid mechanics and its application to these problems is still very new, and further advances seem assured as new phenomena are identified and more detailed and quantitative analogue experiments are developed to study them.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
馆长举报英吉利25求助涉嫌违规
34秒前
馆长举报四月求助涉嫌违规
1分钟前
1分钟前
1分钟前
顺利的雁梅完成签到 ,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
2分钟前
2分钟前
2分钟前
两个榴莲完成签到,获得积分0
2分钟前
2分钟前
RLLLLLLL完成签到 ,获得积分10
2分钟前
3分钟前
yangxi发布了新的文献求助10
3分钟前
研友_VZG7GZ应助yangxi采纳,获得10
3分钟前
yangxi完成签到,获得积分10
3分钟前
3分钟前
3分钟前
4分钟前
灿烂而孤独的八戒完成签到 ,获得积分0
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
BinBlues完成签到,获得积分10
4分钟前
4分钟前
4分钟前
vicky完成签到 ,获得积分10
5分钟前
冷傲半邪完成签到,获得积分10
5分钟前
5分钟前
nuliguan完成签到 ,获得积分10
5分钟前
5分钟前
激动的似狮完成签到,获得积分10
5分钟前
6分钟前
6分钟前
量子星尘发布了新的文献求助10
6分钟前
zpc猪猪完成签到,获得积分10
6分钟前
6分钟前
fabius0351完成签到 ,获得积分10
6分钟前
如歌完成签到,获得积分10
7分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4596449
求助须知:如何正确求助?哪些是违规求助? 4008332
关于积分的说明 12409129
捐赠科研通 3687356
什么是DOI,文献DOI怎么找? 2032344
邀请新用户注册赠送积分活动 1065591
科研通“疑难数据库(出版商)”最低求助积分说明 950877