Convection and mixing in magma chambers

岩浆房 对流 地质学 火成岩 岩浆 火成岩分异 分层(种子) 岩石学 地球物理学 分步结晶(地质学) 混合(物理) 矿物学 机械 地幔(地质学) 地球化学 火山 物理 生物 种子休眠 发芽 量子力学 植物 休眠
作者
J. S. Turner,Ian H. Campbell
出处
期刊:Earth-Science Reviews [Elsevier]
卷期号:23 (4): 255-352 被引量:235
标识
DOI:10.1016/0012-8252(86)90015-2
摘要

This paper reviews advances made during the last seven years in the application of fluid dynamics to problems of igneous petrology, with emphasis on the laboratory work with which the authors have been particularly involved. Attention is focused on processes in magma chambers which produce diversity in igneous rocks, such as fractional crystallization, assimilation and magma mixing. Chamber geometry, and variations in the density and viscosity of the magma within it, are shown to play a major role in determining the dynamical behaviour and the composition of the erupted or solidified products. Various convective processes are first reviewed, and in particular the phenomenon of double-diffusive convection. Two types of double-diffusive interfaces between layers of different composition and temperature are likely to occur in magma chambers. A diffusive interface forms when a layer of hot dense magma is overlain by cooler less dense magma. Heat is transported between the layers faster than composition, driving convection in both layers and maintaining a sharp interface between them. If a layer of hot slightly less dense magma overlies a layer of cooler, denser but compositionally lighter magma, a finger interface forms between them, and compositional differences are transported downwards faster than heat (when each is expressed in terms of the corresponding density changes). Processes leading to the establishment of density, compositional and thermal gradients or steps during the filling of a magma chamber are considered next. The stratification produced, and the extent of mixing between the inflowing and resident magmas, are shown to depend on the flow rate and on the relation between the densities and viscosities of the two components. Slow dense inputs of magma may mix very little with resident magma of comparable viscosity as they spread across the floor of the chamber. A similar pulse injected with high upward momentum forms a turbulent “fountain”, which is a very efficient mechanism for magma mixing, as is a turbulent plume of less dense magma rising through the host magma to the top of the chamber. The form of convection in the filled magma chamber is controlled by the shape and size of the chamber, the viscosity of the magma (through the Rayleigh number which is usually high in the early stages of cooling), and by processes at the boundary which produce lighter or denser fluid than that in the interior of the chamber. Compositional convection due to fluid released by crystallization often dominates over thermal convection. If crystallization at the bottom of a funnel-shaped chamber releases a light magma, this convects away from the floor, causing turbulent convection which tends to homogenize the overlying melt. If the magma released is dense, it flows down the sloping floor and stratifies the magma at the base of the chamber. Convection driven by crystallization in an inverted funnel has the reverse effect, e.g. dense fluid released at the sloping roof now has a homogenizing influence. Assimilation of wall rocks can also lead to identical dynamical effects and thus to zoning in magma chambers. Melting of a light roof, for instance, can produce a layer of cool felsic magma overlying the hotter more basic magma in the lower part of the chamber, with a diffusive interface between them. Assimilation has also been discussed for other geometries: assimilation of the walls of dykes, sills and lava flows can occur when the flow is hot and turbulent, whereas if the flow is laminar the magma will chill against the adjacent rocks and protect them from assimilation. When the magma in a chamber is layered, crystallization can cause the composition and density to change in several ways which may lead to mixing. A crystallizing lower layer of hot dense magma can evolve till it has the density of the magma above it, causing sudden overturning and thorough mixing. On the other hand, with a much more viscous layer above, light fluid is released continuously during crystallization and rises to the top of the chamber with little mixing. Overturning of a gas-rich mafic lower layer into a cooler silicic layer can cause a sudden quenching, with the rapid release of gas which could trigger an explosive eruption. Mixing can also occur during eruption, as two layers are drawn up simultaneously from a stratified chamber when a critical flow velocity is exceeded, and they then mix in the outlet vent. Laboratory experiments suggest, however, that magma mixing is inhibited by large viscosity differences, both during the filling and emptying of a magma chamber. Scaling these results to magmas indicates that a basaltic magma can flow into the bottom of a chamber containing rhyolite with little or no mixing between them, and that these two magma types can also flow out through the same exit vent with limited mixing. Each of the phenomena discussed in this review has been studied, at least in a qualitative way, using laboratory experiments to identify and understand a significant physical process occurring in magma chambers. The field of geological fluid mechanics and its application to these problems is still very new, and further advances seem assured as new phenomena are identified and more detailed and quantitative analogue experiments are developed to study them.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123木头人发布了新的文献求助30
刚刚
1秒前
2秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
shinysparrow应助科研通管家采纳,获得200
3秒前
bkagyin应助科研通管家采纳,获得10
3秒前
3秒前
maox1aoxin应助科研通管家采纳,获得30
3秒前
ding应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
顾矜应助科研通管家采纳,获得10
3秒前
小牛应助科研通管家采纳,获得10
3秒前
orixero应助科研通管家采纳,获得10
3秒前
从容芮应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
思源应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
in应助科研通管家采纳,获得20
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
4秒前
5秒前
5秒前
智博36发布了新的文献求助10
6秒前
隐形曼青应助Limanman采纳,获得10
6秒前
英姑应助a成采纳,获得10
7秒前
田様应助song采纳,获得10
7秒前
8秒前
Singularity发布了新的文献求助10
8秒前
阿尼亚发布了新的文献求助10
8秒前
畅快幻柏完成签到,获得积分20
9秒前
玛卡巴卡完成签到 ,获得积分20
9秒前
9秒前
科研探索者完成签到,获得积分10
11秒前
小丛雨发布了新的文献求助10
11秒前
12秒前
12秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139135
求助须知:如何正确求助?哪些是违规求助? 2790050
关于积分的说明 7793436
捐赠科研通 2446426
什么是DOI,文献DOI怎么找? 1301124
科研通“疑难数据库(出版商)”最低求助积分说明 626106
版权声明 601102