肝细胞癌
医学
生物碱
药理学
体外
体内
细胞生长
癌
内科学
病理
化学
生物
生物化学
生物技术
立体化学
作者
Arnon Nagler,Masaya Ohana,Oren Shibolet,Michal Shapira,Ruslana Alper,Israël Vlodavsky,Mark Pines,Yaron Ilan
标识
DOI:10.1016/j.ejca.2003.11.036
摘要
Halofuginone, a widely used alkaloid coccidiostat, is a potent inhibitor of collagen alpha 1 (I) and matrix metalloproteinase 2 gene expression. Halofuginone also suppresses extracellular matrix deposition and fibroblast proliferation. It was recently shown to be effective in suppression of bladder carcinoma and glioma. This study sought to evaluate the effect of treatment with halofuginone on growth of hepatocellular carcinoma (HCC) in mice. Athymic Balb/c mice were injected subcutaneously with 10(7) human hepatoma cells (Hep3B), followed by treatment with halofuginone administered in the diet (750 microg/kg) starting on day 3, before tumour innoculation. The control group was received a normal diet. Mice were followed for survival, tumour volume and serum alpha-fetoprotein (alpha FP). The mechanism of the anti-tumour effect of halofuginone was determined in vitro by assessing tumour cell growth, and by measuring the serum concentrations of interferon-gamma (IFN gamma) and interleukin 2 (IL2). Halofuginone treatment induced almost complete tumour suppression in treated mice. Mortality rates were 10% and 50%, in halofuginone-treated and control mice, respectively (P<0.001). No visible tumour was observed in treated mice, as compared with a 364 mm3 tumour in control mice. Serum alpha FP were 0.1 and 212 ng/ml in treated and control mice, respectively (P<0.005). Halofuginone significantly inhibited HCC proliferation in vitro. Maximal inhibition of 64% of tumour cell growth was observed at a concentration of 10(-8) M. The anti-tumour effect was mediated via a significant increase in IFN gamma and IL2 (90 vs. 35, and 210 vs. 34 pg/ml in treated and control groups, respectively, P<0.005). Treatment with halofuginone effectively suppressed the progression of HCC in mice. This effect may be associated with a direct anti-tumour effect, and/or enhancement of a systemic immune response.
科研通智能强力驱动
Strongly Powered by AbleSci AI