Semantic Classification of Heterogeneous Urban Scenes Using Intrascene Feature Similarity and Interscene Semantic Dependency

计算机科学 人工智能 特征(语言学) 语义相似性 模式识别(心理学) 相似性(几何) 上下文图像分类 图像(数学) 语言学 哲学
作者
Xiuyuan Zhang,Shihong Du,Yi‐Chen Wang
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:8 (5): 2005-2014 被引量:48
标识
DOI:10.1109/jstars.2015.2414178
摘要

Semantic classification of urban scenes aims to classify scenes composed of many different types of objects into predefined semantic classes. To learn the association between urban scenes and semantic classes, five tasks are needed: 1) segmenting the image into scenes; 2) establishing semantic classes of scenes; 3) extracting and transforming features; 4) measuring the intrascenes feature similarity; and 5) labeling each scene by a semantic classification method. Despite many efforts on these tasks, most existing works consider only visual features with inconsistent similarity measurement, while ignore semantic features inside scenes and the interactions between scenes, leading to poor classification results for high heterogeneous scenes. To solve these problems, this study combines intrascene feature similarity and interscene semantic dependency to form a two-step classification approach. For the first step, visual and semantic features are first optimized to be invariant to affine transformation, and then are employed in K-Nearest Neighbor to initially classify scenes. For the second step, multinomial distribution is presented to model both the spatial and semantic dependency between scenes, and then used to improve the initial classification results. The implementations conducted in two study areas indicate that the proposed approach produces better results for heterogeneous scenes than visual interpretation, as it can discover and model the hidden information between scenes which is often ignored by existing methods. In addition, compared with the initial classification, the optimized step improves accuracies by 3.6% and 5% in the two study areas, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
i3utter完成签到,获得积分10
1秒前
SUNXI完成签到,获得积分10
1秒前
英姑应助科研通管家采纳,获得10
1秒前
六六六应助科研通管家采纳,获得10
1秒前
桐桐应助心灵美剑封采纳,获得10
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
JamesPei应助科研通管家采纳,获得10
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
Jared应助科研通管家采纳,获得10
2秒前
852应助科研通管家采纳,获得10
2秒前
公龟应助科研通管家采纳,获得10
2秒前
Akim应助潇洒的h采纳,获得10
2秒前
2秒前
乐乐应助科研通管家采纳,获得10
2秒前
科研通AI6应助周非王采纳,获得30
2秒前
treetree的应助科研通管家采纳,获得10
2秒前
Akim应助科研通管家采纳,获得10
2秒前
仁爱忆曼完成签到,获得积分10
2秒前
2秒前
2秒前
xwhite完成签到,获得积分10
2秒前
科目三应助科研通管家采纳,获得10
2秒前
酷波er应助科研通管家采纳,获得10
2秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
Jared应助科研通管家采纳,获得10
2秒前
所所应助科研通管家采纳,获得10
2秒前
打打应助科研通管家采纳,获得10
3秒前
在水一方应助科研通管家采纳,获得10
3秒前
莱菲应助科研通管家采纳,获得10
3秒前
所所应助科研通管家采纳,获得10
3秒前
LLLLL完成签到 ,获得积分10
3秒前
桐桐应助科研通管家采纳,获得10
3秒前
SciGPT应助meng采纳,获得50
3秒前
liu123456完成签到,获得积分10
3秒前
zhonglv7应助科研通管家采纳,获得10
3秒前
3秒前
冷艳的二娘完成签到,获得积分10
3秒前
李爱国应助科研通管家采纳,获得10
3秒前
小二郎应助科研通管家采纳,获得10
3秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665717
求助须知:如何正确求助?哪些是违规求助? 4877979
关于积分的说明 15115220
捐赠科研通 4824955
什么是DOI,文献DOI怎么找? 2582994
邀请新用户注册赠送积分活动 1537014
关于科研通互助平台的介绍 1495441