Semantic Classification of Heterogeneous Urban Scenes Using Intrascene Feature Similarity and Interscene Semantic Dependency

计算机科学 人工智能 特征(语言学) 语义相似性 模式识别(心理学) 相似性(几何) 上下文图像分类 图像(数学) 语言学 哲学
作者
Xiuyuan Zhang,Shihong Du,Yi‐Chen Wang
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:8 (5): 2005-2014 被引量:48
标识
DOI:10.1109/jstars.2015.2414178
摘要

Semantic classification of urban scenes aims to classify scenes composed of many different types of objects into predefined semantic classes. To learn the association between urban scenes and semantic classes, five tasks are needed: 1) segmenting the image into scenes; 2) establishing semantic classes of scenes; 3) extracting and transforming features; 4) measuring the intrascenes feature similarity; and 5) labeling each scene by a semantic classification method. Despite many efforts on these tasks, most existing works consider only visual features with inconsistent similarity measurement, while ignore semantic features inside scenes and the interactions between scenes, leading to poor classification results for high heterogeneous scenes. To solve these problems, this study combines intrascene feature similarity and interscene semantic dependency to form a two-step classification approach. For the first step, visual and semantic features are first optimized to be invariant to affine transformation, and then are employed in K-Nearest Neighbor to initially classify scenes. For the second step, multinomial distribution is presented to model both the spatial and semantic dependency between scenes, and then used to improve the initial classification results. The implementations conducted in two study areas indicate that the proposed approach produces better results for heterogeneous scenes than visual interpretation, as it can discover and model the hidden information between scenes which is often ignored by existing methods. In addition, compared with the initial classification, the optimized step improves accuracies by 3.6% and 5% in the two study areas, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
purple1212完成签到,获得积分10
1秒前
2秒前
无心的梦蕊完成签到,获得积分10
4秒前
酷波er应助syk采纳,获得10
4秒前
sduweiyu完成签到 ,获得积分0
4秒前
Cdragon完成签到,获得积分10
4秒前
return33完成签到,获得积分10
5秒前
MM发布了新的文献求助20
6秒前
6秒前
LienAo完成签到 ,获得积分0
6秒前
6秒前
起风了完成签到 ,获得积分10
8秒前
9秒前
10秒前
哈哈哈完成签到,获得积分10
11秒前
顺心人达发布了新的文献求助10
11秒前
隐形曼青应助猪猪hero采纳,获得10
12秒前
12秒前
12秒前
穆思柔完成签到,获得积分10
13秒前
15秒前
16秒前
大模型应助武淑晴采纳,获得10
16秒前
17秒前
Criminology34应助Dylan采纳,获得20
18秒前
Ava应助桔梗采纳,获得10
19秒前
19秒前
19秒前
量子星尘发布了新的文献求助10
20秒前
21秒前
21秒前
小二郎应助OrangeWang采纳,获得10
22秒前
Fff发布了新的文献求助10
22秒前
22秒前
行走的鱼完成签到,获得积分10
23秒前
24秒前
香蕉觅云应助小D爱科研采纳,获得30
25秒前
文静慕青发布了新的文献求助10
26秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5735237
求助须知:如何正确求助?哪些是违规求助? 5359154
关于积分的说明 15328898
捐赠科研通 4879502
什么是DOI,文献DOI怎么找? 2622007
邀请新用户注册赠送积分活动 1571188
关于科研通互助平台的介绍 1527971