Semantic Classification of Heterogeneous Urban Scenes Using Intrascene Feature Similarity and Interscene Semantic Dependency

计算机科学 人工智能 特征(语言学) 语义相似性 模式识别(心理学) 相似性(几何) 上下文图像分类 图像(数学) 语言学 哲学
作者
Xiuyuan Zhang,Shihong Du,Yi‐Chen Wang
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:8 (5): 2005-2014 被引量:48
标识
DOI:10.1109/jstars.2015.2414178
摘要

Semantic classification of urban scenes aims to classify scenes composed of many different types of objects into predefined semantic classes. To learn the association between urban scenes and semantic classes, five tasks are needed: 1) segmenting the image into scenes; 2) establishing semantic classes of scenes; 3) extracting and transforming features; 4) measuring the intrascenes feature similarity; and 5) labeling each scene by a semantic classification method. Despite many efforts on these tasks, most existing works consider only visual features with inconsistent similarity measurement, while ignore semantic features inside scenes and the interactions between scenes, leading to poor classification results for high heterogeneous scenes. To solve these problems, this study combines intrascene feature similarity and interscene semantic dependency to form a two-step classification approach. For the first step, visual and semantic features are first optimized to be invariant to affine transformation, and then are employed in K-Nearest Neighbor to initially classify scenes. For the second step, multinomial distribution is presented to model both the spatial and semantic dependency between scenes, and then used to improve the initial classification results. The implementations conducted in two study areas indicate that the proposed approach produces better results for heterogeneous scenes than visual interpretation, as it can discover and model the hidden information between scenes which is often ignored by existing methods. In addition, compared with the initial classification, the optimized step improves accuracies by 3.6% and 5% in the two study areas, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
户户得振完成签到,获得积分10
1秒前
初晴完成签到,获得积分10
3秒前
4秒前
量子星尘发布了新的文献求助30
6秒前
9秒前
ncuwzq完成签到,获得积分10
11秒前
Cat4pig完成签到 ,获得积分10
15秒前
JodieZhu发布了新的文献求助30
16秒前
16秒前
青云完成签到,获得积分10
19秒前
bclddmy完成签到,获得积分10
22秒前
清风荷影完成签到 ,获得积分10
25秒前
cgs完成签到 ,获得积分10
26秒前
量子星尘发布了新的文献求助10
28秒前
29秒前
NexusExplorer应助Alien采纳,获得10
30秒前
李健应助JodieZhu采纳,获得30
34秒前
34秒前
35秒前
大轩完成签到 ,获得积分10
36秒前
自信书文完成签到 ,获得积分10
37秒前
37秒前
Lrcx完成签到 ,获得积分10
37秒前
苒苒完成签到,获得积分10
39秒前
40秒前
42秒前
44秒前
量子星尘发布了新的文献求助10
45秒前
学术小白完成签到,获得积分10
47秒前
科目三应助眯眯眼的山柳采纳,获得10
48秒前
49秒前
是真的完成签到 ,获得积分10
50秒前
jzmulyl完成签到,获得积分10
51秒前
深情安青应助饭饭采纳,获得10
51秒前
54秒前
凤迎雪飘完成签到,获得积分10
55秒前
大饼完成签到 ,获得积分10
57秒前
jzmupyj完成签到,获得积分10
59秒前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5733107
求助须知:如何正确求助?哪些是违规求助? 5345829
关于积分的说明 15323061
捐赠科研通 4878300
什么是DOI,文献DOI怎么找? 2621144
邀请新用户注册赠送积分活动 1570261
关于科研通互助平台的介绍 1527144