Semantic Classification of Heterogeneous Urban Scenes Using Intrascene Feature Similarity and Interscene Semantic Dependency

计算机科学 人工智能 特征(语言学) 语义相似性 模式识别(心理学) 相似性(几何) 上下文图像分类 图像(数学) 语言学 哲学
作者
Xiuyuan Zhang,Shihong Du,Yi‐Chen Wang
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:8 (5): 2005-2014 被引量:48
标识
DOI:10.1109/jstars.2015.2414178
摘要

Semantic classification of urban scenes aims to classify scenes composed of many different types of objects into predefined semantic classes. To learn the association between urban scenes and semantic classes, five tasks are needed: 1) segmenting the image into scenes; 2) establishing semantic classes of scenes; 3) extracting and transforming features; 4) measuring the intrascenes feature similarity; and 5) labeling each scene by a semantic classification method. Despite many efforts on these tasks, most existing works consider only visual features with inconsistent similarity measurement, while ignore semantic features inside scenes and the interactions between scenes, leading to poor classification results for high heterogeneous scenes. To solve these problems, this study combines intrascene feature similarity and interscene semantic dependency to form a two-step classification approach. For the first step, visual and semantic features are first optimized to be invariant to affine transformation, and then are employed in K-Nearest Neighbor to initially classify scenes. For the second step, multinomial distribution is presented to model both the spatial and semantic dependency between scenes, and then used to improve the initial classification results. The implementations conducted in two study areas indicate that the proposed approach produces better results for heterogeneous scenes than visual interpretation, as it can discover and model the hidden information between scenes which is often ignored by existing methods. In addition, compared with the initial classification, the optimized step improves accuracies by 3.6% and 5% in the two study areas, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
晚香玉发布了新的文献求助10
1秒前
斯文败类应助zhangguo采纳,获得10
2秒前
陈雯发布了新的文献求助10
2秒前
机灵书易发布了新的文献求助10
2秒前
蓝一梁完成签到 ,获得积分10
3秒前
spc68应助迷路幻柏采纳,获得10
3秒前
舒适的秋尽完成签到,获得积分10
3秒前
嘻嘻关注了科研通微信公众号
3秒前
Hq完成签到,获得积分10
4秒前
大个应助喜悦的雁蓉采纳,获得10
4秒前
5秒前
5秒前
6秒前
stttt完成签到,获得积分20
6秒前
9秒前
可爱的函函应助lelehanhan采纳,获得30
9秒前
聪慧念桃发布了新的文献求助10
9秒前
10秒前
stttt发布了新的文献求助10
11秒前
11秒前
Ying发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
13秒前
14秒前
大白菜发布了新的文献求助10
15秒前
16秒前
asdfzxcv应助陈雯采纳,获得10
16秒前
靓丽翩跹完成签到,获得积分10
17秒前
Thi发布了新的文献求助10
17秒前
18秒前
ouya完成签到,获得积分10
18秒前
19秒前
old杜发布了新的文献求助10
20秒前
鲁遥完成签到,获得积分10
21秒前
yang发布了新的文献求助10
22秒前
FashionBoy应助草木青采纳,获得10
22秒前
22秒前
聪慧念桃完成签到,获得积分10
24秒前
荆玉豪完成签到,获得积分10
25秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633567
求助须知:如何正确求助?哪些是违规求助? 4729249
关于积分的说明 14986268
捐赠科研通 4791473
什么是DOI,文献DOI怎么找? 2558931
邀请新用户注册赠送积分活动 1519330
关于科研通互助平台的介绍 1479617