Semantic Classification of Heterogeneous Urban Scenes Using Intrascene Feature Similarity and Interscene Semantic Dependency

计算机科学 人工智能 特征(语言学) 语义相似性 模式识别(心理学) 相似性(几何) 上下文图像分类 图像(数学) 哲学 语言学
作者
Xiuyuan Zhang,Shihong Du,Yi‐Chen Wang
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:8 (5): 2005-2014 被引量:48
标识
DOI:10.1109/jstars.2015.2414178
摘要

Semantic classification of urban scenes aims to classify scenes composed of many different types of objects into predefined semantic classes. To learn the association between urban scenes and semantic classes, five tasks are needed: 1) segmenting the image into scenes; 2) establishing semantic classes of scenes; 3) extracting and transforming features; 4) measuring the intrascenes feature similarity; and 5) labeling each scene by a semantic classification method. Despite many efforts on these tasks, most existing works consider only visual features with inconsistent similarity measurement, while ignore semantic features inside scenes and the interactions between scenes, leading to poor classification results for high heterogeneous scenes. To solve these problems, this study combines intrascene feature similarity and interscene semantic dependency to form a two-step classification approach. For the first step, visual and semantic features are first optimized to be invariant to affine transformation, and then are employed in K-Nearest Neighbor to initially classify scenes. For the second step, multinomial distribution is presented to model both the spatial and semantic dependency between scenes, and then used to improve the initial classification results. The implementations conducted in two study areas indicate that the proposed approach produces better results for heterogeneous scenes than visual interpretation, as it can discover and model the hidden information between scenes which is often ignored by existing methods. In addition, compared with the initial classification, the optimized step improves accuracies by 3.6% and 5% in the two study areas, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不想干活应助zjq采纳,获得10
1秒前
典雅的俊驰应助Jing采纳,获得10
2秒前
咸鱼发布了新的文献求助20
2秒前
2秒前
2秒前
爆米花应助Jane采纳,获得10
2秒前
甘蔗发布了新的文献求助30
2秒前
2秒前
淡然谷秋完成签到 ,获得积分10
3秒前
上官若男应助柒月樊霜采纳,获得10
3秒前
木头人呐完成签到 ,获得积分10
3秒前
4秒前
4秒前
5秒前
诚心中恶发布了新的文献求助10
5秒前
背书强完成签到 ,获得积分10
5秒前
5秒前
Jack123完成签到,获得积分10
6秒前
SciGPT应助认真的缘郡采纳,获得10
6秒前
6秒前
大模型应助乖猫要努力采纳,获得10
6秒前
7秒前
7秒前
哒哒发布了新的文献求助10
7秒前
7秒前
7秒前
眼睛大又蓝完成签到,获得积分10
8秒前
科目三应助科研通管家采纳,获得10
8秒前
shihuishui完成签到,获得积分10
8秒前
田様应助科研通管家采纳,获得10
8秒前
情怀应助科研通管家采纳,获得10
8秒前
情怀应助科研通管家采纳,获得10
8秒前
上官若男应助科研通管家采纳,获得10
8秒前
8秒前
无花果应助科研通管家采纳,获得10
8秒前
李健应助科研通管家采纳,获得10
8秒前
爆米花应助科研通管家采纳,获得30
8秒前
小蘑菇应助科研通管家采纳,获得30
9秒前
zll发布了新的文献求助10
9秒前
Orange应助科研通管家采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4615619
求助须知:如何正确求助?哪些是违规求助? 4019269
关于积分的说明 12441658
捐赠科研通 3702297
什么是DOI,文献DOI怎么找? 2041522
邀请新用户注册赠送积分活动 1074192
科研通“疑难数据库(出版商)”最低求助积分说明 957826