Semantic Classification of Heterogeneous Urban Scenes Using Intrascene Feature Similarity and Interscene Semantic Dependency

计算机科学 人工智能 特征(语言学) 语义相似性 模式识别(心理学) 相似性(几何) 上下文图像分类 图像(数学) 语言学 哲学
作者
Xiuyuan Zhang,Shihong Du,Yi‐Chen Wang
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:8 (5): 2005-2014 被引量:48
标识
DOI:10.1109/jstars.2015.2414178
摘要

Semantic classification of urban scenes aims to classify scenes composed of many different types of objects into predefined semantic classes. To learn the association between urban scenes and semantic classes, five tasks are needed: 1) segmenting the image into scenes; 2) establishing semantic classes of scenes; 3) extracting and transforming features; 4) measuring the intrascenes feature similarity; and 5) labeling each scene by a semantic classification method. Despite many efforts on these tasks, most existing works consider only visual features with inconsistent similarity measurement, while ignore semantic features inside scenes and the interactions between scenes, leading to poor classification results for high heterogeneous scenes. To solve these problems, this study combines intrascene feature similarity and interscene semantic dependency to form a two-step classification approach. For the first step, visual and semantic features are first optimized to be invariant to affine transformation, and then are employed in K-Nearest Neighbor to initially classify scenes. For the second step, multinomial distribution is presented to model both the spatial and semantic dependency between scenes, and then used to improve the initial classification results. The implementations conducted in two study areas indicate that the proposed approach produces better results for heterogeneous scenes than visual interpretation, as it can discover and model the hidden information between scenes which is often ignored by existing methods. In addition, compared with the initial classification, the optimized step improves accuracies by 3.6% and 5% in the two study areas, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
123完成签到,获得积分10
刚刚
1秒前
Bigweenine完成签到,获得积分10
1秒前
李健应助娲娃佤哇采纳,获得10
2秒前
Zx_1993应助从容艳血采纳,获得20
2秒前
黄婷完成签到,获得积分10
2秒前
张宇豪完成签到,获得积分10
3秒前
完美世界应助哈哈哈采纳,获得10
3秒前
3秒前
4秒前
4秒前
Owen应助jun采纳,获得10
5秒前
nan发布了新的文献求助10
5秒前
HearbaRtNDY完成签到,获得积分10
6秒前
深情安青应助ooox采纳,获得10
6秒前
6秒前
善学以致用应助柚子采纳,获得10
7秒前
大聪明完成签到,获得积分10
7秒前
华仔应助墨客采纳,获得10
7秒前
李健的小迷弟应助010-LYN采纳,获得10
7秒前
耶耶完成签到,获得积分10
8秒前
8秒前
charllar发布了新的文献求助10
8秒前
123发布了新的文献求助10
8秒前
无极微光应助灼灼采纳,获得20
8秒前
zll990102关注了科研通微信公众号
9秒前
大聪明发布了新的文献求助10
9秒前
10秒前
11秒前
小星星发布了新的文献求助20
11秒前
白阳完成签到,获得积分10
11秒前
11秒前
11秒前
12秒前
脑洞疼应助一朵小鲜花儿采纳,获得10
12秒前
nan完成签到,获得积分10
13秒前
gewenxue发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助20
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5531780
求助须知:如何正确求助?哪些是违规求助? 4620574
关于积分的说明 14573778
捐赠科研通 4560339
什么是DOI,文献DOI怎么找? 2498813
邀请新用户注册赠送积分活动 1478687
关于科研通互助平台的介绍 1450049