Semantic Classification of Heterogeneous Urban Scenes Using Intrascene Feature Similarity and Interscene Semantic Dependency

计算机科学 人工智能 特征(语言学) 语义相似性 模式识别(心理学) 相似性(几何) 上下文图像分类 图像(数学) 语言学 哲学
作者
Xiuyuan Zhang,Shihong Du,Yi‐Chen Wang
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:8 (5): 2005-2014 被引量:48
标识
DOI:10.1109/jstars.2015.2414178
摘要

Semantic classification of urban scenes aims to classify scenes composed of many different types of objects into predefined semantic classes. To learn the association between urban scenes and semantic classes, five tasks are needed: 1) segmenting the image into scenes; 2) establishing semantic classes of scenes; 3) extracting and transforming features; 4) measuring the intrascenes feature similarity; and 5) labeling each scene by a semantic classification method. Despite many efforts on these tasks, most existing works consider only visual features with inconsistent similarity measurement, while ignore semantic features inside scenes and the interactions between scenes, leading to poor classification results for high heterogeneous scenes. To solve these problems, this study combines intrascene feature similarity and interscene semantic dependency to form a two-step classification approach. For the first step, visual and semantic features are first optimized to be invariant to affine transformation, and then are employed in K-Nearest Neighbor to initially classify scenes. For the second step, multinomial distribution is presented to model both the spatial and semantic dependency between scenes, and then used to improve the initial classification results. The implementations conducted in two study areas indicate that the proposed approach produces better results for heterogeneous scenes than visual interpretation, as it can discover and model the hidden information between scenes which is often ignored by existing methods. In addition, compared with the initial classification, the optimized step improves accuracies by 3.6% and 5% in the two study areas, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
唐英发布了新的文献求助10
刚刚
刚刚
Ericlee完成签到,获得积分10
刚刚
navazzz罗发布了新的文献求助10
1秒前
1秒前
1秒前
烟花应助强健的电源采纳,获得10
2秒前
毛豆应助微笑亿先采纳,获得10
2秒前
范范范完成签到,获得积分10
3秒前
淡然的香薇完成签到,获得积分10
3秒前
StarkGavin完成签到,获得积分10
4秒前
无语的沛春完成签到,获得积分10
4秒前
充电宝应助米兰无敌采纳,获得10
4秒前
研友_pLwBm8发布了新的文献求助10
5秒前
5秒前
5秒前
麦田稻草人完成签到,获得积分10
5秒前
5秒前
ding应助浅辰采纳,获得10
6秒前
潘道士完成签到 ,获得积分10
6秒前
小鱼爱吃肉应助mikeleung采纳,获得10
7秒前
一蓑烟雨任平生完成签到,获得积分10
7秒前
爱静静应助漂亮幻莲采纳,获得10
8秒前
de完成签到,获得积分10
9秒前
pluto应助科研通管家采纳,获得10
9秒前
我是老大应助科研通管家采纳,获得10
9秒前
supertkeb应助科研通管家采纳,获得10
9秒前
慕青应助科研通管家采纳,获得30
9秒前
搜集达人应助科研通管家采纳,获得10
9秒前
爆米花应助科研通管家采纳,获得10
9秒前
Akim应助科研通管家采纳,获得10
10秒前
Lucas应助科研通管家采纳,获得10
10秒前
小木木壮应助科研通管家采纳,获得10
10秒前
良辰应助科研通管家采纳,获得10
10秒前
敬老院N号应助科研通管家采纳,获得30
10秒前
10秒前
10秒前
11秒前
july发布了新的文献求助10
11秒前
SciGPT应助Violet采纳,获得10
11秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3311876
求助须知:如何正确求助?哪些是违规求助? 2944696
关于积分的说明 8520681
捐赠科研通 2620293
什么是DOI,文献DOI怎么找? 1432756
科研通“疑难数据库(出版商)”最低求助积分说明 664759
邀请新用户注册赠送积分活动 650064