Semantic Classification of Heterogeneous Urban Scenes Using Intrascene Feature Similarity and Interscene Semantic Dependency

计算机科学 人工智能 特征(语言学) 语义相似性 模式识别(心理学) 相似性(几何) 上下文图像分类 图像(数学) 语言学 哲学
作者
Xiuyuan Zhang,Shihong Du,Yi‐Chen Wang
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:8 (5): 2005-2014 被引量:48
标识
DOI:10.1109/jstars.2015.2414178
摘要

Semantic classification of urban scenes aims to classify scenes composed of many different types of objects into predefined semantic classes. To learn the association between urban scenes and semantic classes, five tasks are needed: 1) segmenting the image into scenes; 2) establishing semantic classes of scenes; 3) extracting and transforming features; 4) measuring the intrascenes feature similarity; and 5) labeling each scene by a semantic classification method. Despite many efforts on these tasks, most existing works consider only visual features with inconsistent similarity measurement, while ignore semantic features inside scenes and the interactions between scenes, leading to poor classification results for high heterogeneous scenes. To solve these problems, this study combines intrascene feature similarity and interscene semantic dependency to form a two-step classification approach. For the first step, visual and semantic features are first optimized to be invariant to affine transformation, and then are employed in K-Nearest Neighbor to initially classify scenes. For the second step, multinomial distribution is presented to model both the spatial and semantic dependency between scenes, and then used to improve the initial classification results. The implementations conducted in two study areas indicate that the proposed approach produces better results for heterogeneous scenes than visual interpretation, as it can discover and model the hidden information between scenes which is often ignored by existing methods. In addition, compared with the initial classification, the optimized step improves accuracies by 3.6% and 5% in the two study areas, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mc发布了新的文献求助10
刚刚
刚刚
Xu完成签到,获得积分10
1秒前
无极微光应助Ji采纳,获得20
2秒前
3秒前
Aurora1011完成签到 ,获得积分10
6秒前
7秒前
7秒前
su发布了新的文献求助10
7秒前
Juliette发布了新的文献求助10
8秒前
白英完成签到,获得积分10
8秒前
9秒前
10秒前
YMY完成签到,获得积分10
10秒前
kxkx完成签到,获得积分10
11秒前
嘻嘻发布了新的文献求助10
12秒前
池台下完成签到 ,获得积分10
13秒前
anjin完成签到 ,获得积分10
13秒前
李健应助蓝胖子采纳,获得20
13秒前
量子星尘发布了新的文献求助10
14秒前
米糊发布了新的文献求助20
15秒前
VDC发布了新的文献求助10
16秒前
李李李应助Khan采纳,获得10
16秒前
qvb完成签到 ,获得积分10
16秒前
适合初七完成签到,获得积分10
17秒前
17秒前
black_cavalry完成签到,获得积分10
18秒前
19秒前
19秒前
优雅的羊毛卷儿完成签到,获得积分10
20秒前
21秒前
LY发布了新的文献求助10
23秒前
雪落完成签到,获得积分10
23秒前
科科通通完成签到,获得积分10
24秒前
宋虹发布了新的文献求助10
24秒前
华仔应助LY采纳,获得10
26秒前
26秒前
31秒前
董春伟完成签到,获得积分10
32秒前
打打应助鱼鱼鱼采纳,获得10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600631
求助须知:如何正确求助?哪些是违规求助? 4686248
关于积分的说明 14842519
捐赠科研通 4677270
什么是DOI,文献DOI怎么找? 2538898
邀请新用户注册赠送积分活动 1505830
关于科研通互助平台的介绍 1471207