控制理论(社会学)
执行机构
自适应控制
植物
控制器(灌溉)
控制工程
全状态反馈
补偿(心理学)
控制系统
跟踪(教育)
计算机科学
工程类
控制(管理)
人工智能
心理学
教育学
电气工程
精神分析
农学
生物
作者
Gang Tao,Suresh M. Joshi,Xiaojun Ma
摘要
Direct adaptive-state feedback control schemes are developed for linear time-invariant plants with actuator failures with characterizations that some of the plant inputs are stuck at some fixed or varying values which cannot be influenced by control action. Conditions and controller structures for achieving plant-model state matching in the presence of actuator failures are derived. Adaptive laws are designed for updating the controller parameters when both the plant parameters and actuator-failure parameters are unknown. Closed-loop stability and asymptotic-state tracking are ensured. Simulation results show that desired system performance is achieved with the developed adaptive actuator failure compensation control designs.
科研通智能强力驱动
Strongly Powered by AbleSci AI