超声波传感器
声学
估计
材料科学
功率(物理)
光学
物理
热力学
工程类
系统工程
作者
W. Straube,R. Martin Arthur
标识
DOI:10.1016/0301-5629(94)90051-5
摘要
The backscattered signal received from an insonified volume of tissue depends on tissue properties, such as attenuation, velocity, density, and backscatter coefficient and on the characteristics of the transducer at the insonified volume. Analysis of scattering in response to a burst of insonification showed that the temperature dependence of backscattered power was dominated by the effect of temperature on the backscatter coefficient. The temperature dependence of attenuation had a small effect on backscattered power. Backscattered power was independent of effects of temperature on velocity. These results were seen in the analysis of two types of inhomogeneity: 1) an aqueous scatterer in a water-based medium and 2) a lipid-based scatterer in the same water-based medium. The temperature dependence of the backscatter coefficient was inferred assuming that the backscatter coefficient was proportional to the scattering crosssection of a small scatterer. Backscattered power increased nearly logarithmically with temperature over the range from 37° to 50°C. Our model predicted a change of 5 dB for the lipid scatterer and a change of up to 3 db for the aqueous-based scatterer over that temperature range. For situations in which temperature dependence of the backscattered power can be calibrated, it may be possible to use the backscattered power level to track temperature distributions in tissue.
科研通智能强力驱动
Strongly Powered by AbleSci AI