Matching by Propensity Score in Cohort Studies with Three Treatment Groups

倾向得分匹配 协变量 成对比较 统计 医学 均方误差 混淆 匹配(统计) 比较有效性研究 数学 病理 替代医学
作者
Jeremy A. Rassen,Abhi Shelat,Jessica M. Franklin,Robert J. Glynn,Daniel H. Solomon,Sebastian Schneeweiß
出处
期刊:Epidemiology [Lippincott Williams & Wilkins]
卷期号:24 (3): 401-409 被引量:156
标识
DOI:10.1097/ede.0b013e318289dedf
摘要

Background: Nonrandomized pharmacoepidemiology generally compares one medication with another. For many conditions, clinicians can benefit from comparing the safety and effectiveness of three or more appropriate treatment options. We sought to compare three treatment groups simultaneously by creating 1:1:1 propensity score-matched cohorts. Methods: We developed a technique that estimates generalized propensity scores and then creates 1:1:1 matched sets. We compared this methodology with two existing approaches—construction of matched cohorts through a common-referent group and a pairwise match for each possible contrast. In a simulation, we varied unmeasured confounding, presence of treatment effect heterogeneity, and the prevalence of treatments and compared each method's bias, variance, and mean squared error (MSE) of the treatment effect. We applied these techniques to a cohort of rheumatoid arthritis patients treated with nonselective nonsteroidal anti-inflammatory drugs, COX-2 selective inhibitors, or opioids. Results: We performed 1000 simulation runs. In the base case, we observed an average bias of 0.4% (MSE × 100 = 0.2) in the three-way matching approach and an average bias of 0.3% (MSE × 100 = 0.2) with the pairwise technique. The techniques showed differing bias and MSE with increasing treatment effect heterogeneity and decreasing propensity score overlap. With highly unequal exposure prevalences, strong heterogeneity, and low overlap, we observed a bias of 6.5% (MSE × 100 = 10.8) in the three-way approach and 12.5% (MSE × 100 = 12.3) in the pairwise approach. The empirical study displayed better covariate balance using the pairwise approach. Point estimates were substantially similar. Conclusions: Our matching approach offers an effective way to study the safety and effectiveness of three treatment options. We recommend its use over the pairwise or common-referent approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小布丁关注了科研通微信公众号
刚刚
刚刚
愉快彩虹完成签到,获得积分10
刚刚
高高的坤完成签到,获得积分10
1秒前
烤冷面应助kingwill采纳,获得20
1秒前
追寻清完成签到,获得积分10
2秒前
3秒前
3秒前
sisyphus完成签到,获得积分10
3秒前
baobaoxiong完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助30
4秒前
4秒前
甜甜青文完成签到 ,获得积分10
4秒前
神经娃完成签到,获得积分10
4秒前
会撒娇的芷烟完成签到,获得积分10
4秒前
4秒前
Gallagher发布了新的文献求助10
5秒前
浮游应助唯有一个心采纳,获得10
5秒前
poly完成签到 ,获得积分10
6秒前
林楚棋完成签到 ,获得积分10
6秒前
6秒前
画个饼充饥完成签到,获得积分10
6秒前
高高的坤发布了新的文献求助10
6秒前
太阳花完成签到,获得积分10
6秒前
bkagyin应助Aero采纳,获得10
7秒前
科研通AI6应助bhkwxdxy采纳,获得10
7秒前
动听的初蓝完成签到 ,获得积分10
7秒前
愉快寄真完成签到,获得积分10
8秒前
小布丁发布了新的文献求助10
8秒前
我不221发布了新的文献求助10
8秒前
浮游应助BRADp采纳,获得10
8秒前
自由可兰完成签到 ,获得积分10
8秒前
9秒前
陈楷发布了新的文献求助10
9秒前
甜甜友容完成签到,获得积分10
10秒前
王大哥发布了新的文献求助20
10秒前
drleslie完成签到 ,获得积分10
10秒前
adagio完成签到,获得积分10
11秒前
李白发布了新的文献求助10
11秒前
充电宝应助tiantian采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4935909
求助须知:如何正确求助?哪些是违规求助? 4203582
关于积分的说明 13060246
捐赠科研通 3980919
什么是DOI,文献DOI怎么找? 2179848
邀请新用户注册赠送积分活动 1195794
关于科研通互助平台的介绍 1107678