核糖核蛋白
核酸
化学
DNA
小核核糖核蛋白
异质核核糖核蛋白
抄写(语言学)
核糖核酸
结晶学
分子生物学
生物物理学
生物
生物化学
基因
语言学
哲学
作者
James L. Baber,Daniel Libutti,David Levens,Nico Tjandra
标识
DOI:10.1006/jmbi.1999.2818
摘要
Among it's many reported functions, heterogeneous nuclear ribonucleoprotein (hnRNP) K is a transcription factor for the c- myc gene, a proto-oncogene critical for the regulation of cell growth and differentiation. We have determined the solution structure of the Gly26→Arg mutant of the C-terminal K-homology (KH) domain of hnRNP K by NMR spectroscopy. This is the first structure investigation of hnRNP K. Backbone residual dipolar couplings, which provide information that is fundamentally different from the standard NOE-derived distance restraints, were employed to improve structure quality. An independent assessment of structure quality was achieved by comparing the backbone15N T1/T2ratios to the calculated structures. The C-terminal KH module of hnRNP K (KH3) is revealed to be a three-stranded β-sheet stacked against three α-helices, two of which are nearly parallel to the strands of the β-sheet. The Gly26→Arg mutation abolishes single-stranded DNA binding without altering the overall fold of the protein. This provides a clue to possible nucleotide binding sites of KH3. It appears unlikely that the solvent-exposed side of the β-sheet will be the site of protein-nucleic acid complex formation. This is in contrast to the earlier theme for protein-RNA complexes incorporating proteins structurally similar to KH3. We propose that the surface of KH3 that interacts with nucleic acid is comparable to the region of DNA interaction for the double-stranded DNA-binding domain of bovine papillomavirus-1 E2 that has a three-dimensional fold similar to that of KH3.
科研通智能强力驱动
Strongly Powered by AbleSci AI