临界性
消散
缩放比例
背景(考古学)
自组织临界性
指数
联轴节(管道)
伊辛模型
物理
统计物理学
国家(计算机科学)
机制(生物学)
理论物理学
量子力学
计算机科学
数学
工程类
核物理学
算法
几何学
哲学
地质学
古生物学
语言学
机械工程
作者
Gunnar Pruessner,Ole Peters
标识
DOI:10.1103/physreve.77.048102
摘要
In R. Dickman, M. A. Mu\~noz, A. Vespignani, and S. Zapperi [Braz. J. Phys. 30, 27 (2000)], Dickman et al. suggested that self-organized criticality can be produced by coupling the activity of an absorbing state model to a dissipation mechanism and adding an external drive. We analyzed the proposed mechanism in G. Pruessner and O. Peters [Phys. Rev. E 73, 025106(R) (2006)] and found that if this mechanism is at work, the finite-size scaling found in self-organized criticality will depend on the details of the implementation of dissipation and driving. In the preceding paper [M. J. Alava, L. Laurson, A. Vespignani, and S. Zapperi, Phys. Rev. E 77, 048101 (2008)], Alava et al. show that one avalanche exponent in the absorbing state approach becomes independent of dissipation and driving. In our reply we clarify their findings and put them in the context of the original paper.
科研通智能强力驱动
Strongly Powered by AbleSci AI