Recent decline in the global land evapotranspiration trend due to limited moisture supply

蒸散量 水循环 环境科学 气候变化 全球变暖 降水 潜在蒸发 全球变化 土地利用、土地利用的变化和林业 气候学 大气科学 土地利用 气象学 地理 地质学 生态学 海洋学 生物
作者
Martin Jung,Markus Reichstein,Philippe Ciais,Sonia I. Seneviratne,Justin Sheffield,Michael L. Goulden,Gordon B. Bonan,Alessandro Cescatti,Jiquan Chen,Richard de Jeu,A. J. Dolman,Werner Eugster,Dieter Gerten,Damiano Gianelle,Nadine Gobron,Jens Heinke,John S. Kimball,B. E. Law,Leonardo Montagnani,Qiaozhen Mu,Brigitte Mueller,Keith W. Oleson,Dario Papale,Andrew D. Richardson,Olivier Roupsard,S. W. Running,Enrico Tomelleri,Nicolas Viovy,Ulrich Weber,C. A. Williams,Eric F. Wood,Sönke Zaehle,Ke Zhang
出处
期刊:Nature [Springer Nature]
卷期号:467 (7318): 951-954 被引量:1763
标识
DOI:10.1038/nature09396
摘要

An acceleration of the global hydrological cycle, evapotranspiration included, is regarded as a key indicator of the impact of global warming on Earth's system. Evapotranspiration refers to the water that moves from Earth's land surface to the atmosphere through the combined effects of evaporation and plant transpiration. Martin Jung and colleagues use a data-driven machine-learning technique and a suite of process-based models to show that, between 1982 and 1997, evapotranspiration increased steadily with global warming. But since 1998, the increasing trend has flattened, probably as a result of limitations in soil-moisture supply in the Southern Hemisphere — particularly Africa and Australia. It remains to be seen whether this is part of a natural climate variation or a climate-change signal in which land evapotranspiration becomes more supply-limited in the long term. Climate change is expected to intensify the global hydrological cycle and to alter evapotranspiration, but direct observational constraints are lacking at the global scale. Now a data-driven, machine-learning technique and a suite of process-based models have been used to show that from 1982 to 1997 global evapotranspiration increased by about 7.1 millimetres per year per decade. But since 1998 this increase has ceased, probably because of moisture limitation in the Southern Hemisphere. More than half of the solar energy absorbed by land surfaces is currently used to evaporate water1. Climate change is expected to intensify the hydrological cycle2 and to alter evapotranspiration, with implications for ecosystem services and feedback to regional and global climate. Evapotranspiration changes may already be under way, but direct observational constraints are lacking at the global scale. Until such evidence is available, changes in the water cycle on land—a key diagnostic criterion of the effects of climate change and variability—remain uncertain. Here we provide a data-driven estimate of global land evapotranspiration from 1982 to 2008, compiled using a global monitoring network3, meteorological and remote-sensing observations, and a machine-learning algorithm4. In addition, we have assessed evapotranspiration variations over the same time period using an ensemble of process-based land-surface models. Our results suggest that global annual evapotranspiration increased on average by 7.1 ± 1.0 millimetres per year per decade from 1982 to 1997. After that, coincident with the last major El Niño event in 1998, the global evapotranspiration increase seems to have ceased until 2008. This change was driven primarily by moisture limitation in the Southern Hemisphere, particularly Africa and Australia. In these regions, microwave satellite observations indicate that soil moisture decreased from 1998 to 2008. Hence, increasing soil-moisture limitations on evapotranspiration largely explain the recent decline of the global land-evapotranspiration trend. Whether the changing behaviour of evapotranspiration is representative of natural climate variability or reflects a more permanent reorganization of the land water cycle is a key question for earth system science.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
一叶知秋发布了新的文献求助10
2秒前
研友_VZG7GZ应助barry采纳,获得10
2秒前
慕青应助高兴的悟空采纳,获得10
2秒前
小胖胖完成签到,获得积分10
2秒前
李健的小迷弟应助yx阿聪采纳,获得10
3秒前
Shawn完成签到,获得积分10
3秒前
3秒前
车车完成签到,获得积分10
4秒前
断笔画墨完成签到 ,获得积分10
5秒前
称心奇迹发布了新的文献求助10
5秒前
WEIWEI发布了新的文献求助10
5秒前
5秒前
乐乐应助zt采纳,获得10
6秒前
雪白十三完成签到,获得积分20
7秒前
可耐的星星完成签到,获得积分10
7秒前
Wb发布了新的文献求助10
8秒前
立婉陶完成签到,获得积分10
8秒前
wjp完成签到 ,获得积分10
8秒前
爱大美完成签到,获得积分10
8秒前
8秒前
小思发布了新的文献求助10
9秒前
深情安青应助科研通管家采纳,获得10
9秒前
我是老大应助科研通管家采纳,获得10
9秒前
丘比特应助科研通管家采纳,获得10
9秒前
英姑应助科研通管家采纳,获得10
9秒前
852应助科研通管家采纳,获得10
9秒前
领导范儿应助科研通管家采纳,获得10
9秒前
蓝天应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
英姑应助科研通管家采纳,获得10
9秒前
隐形曼青应助科研通管家采纳,获得10
9秒前
蓝天应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
10秒前
搜集达人应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
传统的复天完成签到,获得积分10
10秒前
yon应助科研通管家采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589068
求助须知:如何正确求助?哪些是违规求助? 4672334
关于积分的说明 14790349
捐赠科研通 4627486
什么是DOI,文献DOI怎么找? 2532071
邀请新用户注册赠送积分活动 1500706
关于科研通互助平台的介绍 1468396