Recent decline in the global land evapotranspiration trend due to limited moisture supply

蒸散量 水循环 环境科学 气候变化 全球变暖 降水 潜在蒸发 全球变化 土地利用、土地利用的变化和林业 气候学 大气科学 土地利用 气象学 地理 地质学 生态学 海洋学 生物
作者
Martin Jung,Markus Reichstein,Philippe Ciais,Sonia I. Seneviratne,Justin Sheffield,Michael L. Goulden,Gordon B. Bonan,Alessandro Cescatti,Jiquan Chen,Richard de Jeu,A. J. Dolman,Werner Eugster,Dieter Gerten,Damiano Gianelle,Nadine Gobron,Jens Heinke,John S. Kimball,B. E. Law,Leonardo Montagnani,Qiaozhen Mu,Brigitte Mueller,Keith W. Oleson,Dario Papale,Andrew D. Richardson,Olivier Roupsard,S. W. Running,Enrico Tomelleri,Nicolas Viovy,Ulrich Weber,C. A. Williams,Eric F. Wood,Sönke Zaehle,Ke Zhang
出处
期刊:Nature [Nature Portfolio]
卷期号:467 (7318): 951-954 被引量:1763
标识
DOI:10.1038/nature09396
摘要

An acceleration of the global hydrological cycle, evapotranspiration included, is regarded as a key indicator of the impact of global warming on Earth's system. Evapotranspiration refers to the water that moves from Earth's land surface to the atmosphere through the combined effects of evaporation and plant transpiration. Martin Jung and colleagues use a data-driven machine-learning technique and a suite of process-based models to show that, between 1982 and 1997, evapotranspiration increased steadily with global warming. But since 1998, the increasing trend has flattened, probably as a result of limitations in soil-moisture supply in the Southern Hemisphere — particularly Africa and Australia. It remains to be seen whether this is part of a natural climate variation or a climate-change signal in which land evapotranspiration becomes more supply-limited in the long term. Climate change is expected to intensify the global hydrological cycle and to alter evapotranspiration, but direct observational constraints are lacking at the global scale. Now a data-driven, machine-learning technique and a suite of process-based models have been used to show that from 1982 to 1997 global evapotranspiration increased by about 7.1 millimetres per year per decade. But since 1998 this increase has ceased, probably because of moisture limitation in the Southern Hemisphere. More than half of the solar energy absorbed by land surfaces is currently used to evaporate water1. Climate change is expected to intensify the hydrological cycle2 and to alter evapotranspiration, with implications for ecosystem services and feedback to regional and global climate. Evapotranspiration changes may already be under way, but direct observational constraints are lacking at the global scale. Until such evidence is available, changes in the water cycle on land—a key diagnostic criterion of the effects of climate change and variability—remain uncertain. Here we provide a data-driven estimate of global land evapotranspiration from 1982 to 2008, compiled using a global monitoring network3, meteorological and remote-sensing observations, and a machine-learning algorithm4. In addition, we have assessed evapotranspiration variations over the same time period using an ensemble of process-based land-surface models. Our results suggest that global annual evapotranspiration increased on average by 7.1 ± 1.0 millimetres per year per decade from 1982 to 1997. After that, coincident with the last major El Niño event in 1998, the global evapotranspiration increase seems to have ceased until 2008. This change was driven primarily by moisture limitation in the Southern Hemisphere, particularly Africa and Australia. In these regions, microwave satellite observations indicate that soil moisture decreased from 1998 to 2008. Hence, increasing soil-moisture limitations on evapotranspiration largely explain the recent decline of the global land-evapotranspiration trend. Whether the changing behaviour of evapotranspiration is representative of natural climate variability or reflects a more permanent reorganization of the land water cycle is a key question for earth system science.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
waayu完成签到 ,获得积分10
刚刚
迷人芙蓉发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
搜集达人应助kassidy采纳,获得10
2秒前
2秒前
罗那完成签到,获得积分10
2秒前
3秒前
vv关闭了vv文献求助
4秒前
科研通AI2S应助研友_RLNXOZ采纳,获得10
4秒前
852应助Whale采纳,获得10
4秒前
5秒前
王者归来发布了新的文献求助30
5秒前
6秒前
猪猪hero应助鲤鱼安青采纳,获得10
6秒前
失眠水风完成签到,获得积分10
6秒前
6秒前
Rondab应助shinn采纳,获得10
7秒前
westbobo发布了新的文献求助10
7秒前
8秒前
9秒前
10秒前
啊啊啊发布了新的文献求助10
12秒前
科目三应助westbobo采纳,获得10
12秒前
12秒前
13秒前
13秒前
13秒前
13秒前
14秒前
Ion发布了新的文献求助10
14秒前
14秒前
14秒前
bei发布了新的文献求助10
16秒前
共享精神应助李治稳采纳,获得10
17秒前
zhuzhuxia发布了新的文献求助10
17秒前
研友_RLNXOZ发布了新的文献求助10
17秒前
17秒前
18秒前
youyou发布了新的文献求助10
19秒前
www发布了新的文献求助10
19秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975339
求助须知:如何正确求助?哪些是违规求助? 3519670
关于积分的说明 11199199
捐赠科研通 3256002
什么是DOI,文献DOI怎么找? 1798043
邀请新用户注册赠送积分活动 877386
科研通“疑难数据库(出版商)”最低求助积分说明 806305