清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Single-line rail rapid transit timetabling under dynamic passenger demand

元启发式 数学优化 计算 直线(几何图形) 运筹学 动态规划 粒子群优化 计算机科学 工程类 算法 数学 几何学
作者
Eva Barrena,David Canca,Leandro C. Coelho,Gilbert Laporte
出处
期刊:Transportation Research Part B-methodological [Elsevier]
卷期号:70: 134-150 被引量:236
标识
DOI:10.1016/j.trb.2014.08.013
摘要

Railway planning is a complex activity which is usually decomposed into several stages, traditionally network design, line design, timetabling, rolling stock, and staffing. In this paper, we study the design and optimization of train timetables for a rail rapid transit (RRT) line adapted to a dynamic demand environment, which focuses on creating convenient timetables for passengers. The objective is to minimize the average passenger waiting time at the stations, thus focusing on passenger welfare. We first propose two mathematical programming formulations which generalize the non-periodic train timetabling problem on a single line under a dynamic demand pattern. We then analyze the properties of the problem before introducing a fast adaptive large neighborhood search (ALNS) metaheuristic in order to solve large instances of the problem within short computation times. The algorithm yields timetables that may not be regular or periodic, but are adjusted to a dynamic demand behavior. Through extensive computational experiments on artificial and real-world based instances, we demonstrate the computational superiority of our ALNS compared with a truncated branch-and-cut algorithm. The average reduction in passenger waiting times is 26%, while the computational time of our metaheuristic is less than 1% of that required by the alternative CPLEX-based algorithm. Out of 120 open instances, we obtain 84 new best known solutions and we reach the optimum on 10 out of 14 instances with known optimal solutions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助夏花般灿烂采纳,获得10
2秒前
来自大西洋的超完成签到,获得积分10
5秒前
夏花般灿烂完成签到,获得积分10
11秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
呆呆的猕猴桃完成签到 ,获得积分10
28秒前
111完成签到,获得积分10
1分钟前
1分钟前
lyw发布了新的文献求助10
1分钟前
bkagyin应助lyw采纳,获得10
1分钟前
2分钟前
Rottyyii发布了新的文献求助10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
万能图书馆应助Rottyyii采纳,获得10
2分钟前
宇文天思完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
胖小羊完成签到 ,获得积分10
3分钟前
tt完成签到,获得积分10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
lyw发布了新的文献求助10
3分钟前
搜集达人应助lyw采纳,获得10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
共享精神应助科研通管家采纳,获得10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5706478
求助须知:如何正确求助?哪些是违规求助? 5174101
关于积分的说明 15246948
捐赠科研通 4859987
什么是DOI,文献DOI怎么找? 2608298
邀请新用户注册赠送积分活动 1559213
关于科研通互助平台的介绍 1516991