Single-line rail rapid transit timetabling under dynamic passenger demand

元启发式 数学优化 计算 直线(几何图形) 运筹学 动态规划 粒子群优化 计算机科学 工程类 算法 数学 几何学
作者
Eva Barrena,David Canca,Leandro C. Coelho,Gilbert Laporte
出处
期刊:Transportation Research Part B-methodological [Elsevier]
卷期号:70: 134-150 被引量:236
标识
DOI:10.1016/j.trb.2014.08.013
摘要

Railway planning is a complex activity which is usually decomposed into several stages, traditionally network design, line design, timetabling, rolling stock, and staffing. In this paper, we study the design and optimization of train timetables for a rail rapid transit (RRT) line adapted to a dynamic demand environment, which focuses on creating convenient timetables for passengers. The objective is to minimize the average passenger waiting time at the stations, thus focusing on passenger welfare. We first propose two mathematical programming formulations which generalize the non-periodic train timetabling problem on a single line under a dynamic demand pattern. We then analyze the properties of the problem before introducing a fast adaptive large neighborhood search (ALNS) metaheuristic in order to solve large instances of the problem within short computation times. The algorithm yields timetables that may not be regular or periodic, but are adjusted to a dynamic demand behavior. Through extensive computational experiments on artificial and real-world based instances, we demonstrate the computational superiority of our ALNS compared with a truncated branch-and-cut algorithm. The average reduction in passenger waiting times is 26%, while the computational time of our metaheuristic is less than 1% of that required by the alternative CPLEX-based algorithm. Out of 120 open instances, we obtain 84 new best known solutions and we reach the optimum on 10 out of 14 instances with known optimal solutions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
眼泪划过面容完成签到,获得积分20
1秒前
桐桐应助upupup采纳,获得10
2秒前
5秒前
7秒前
CXSCXD发布了新的文献求助10
8秒前
英姑应助dzz采纳,获得10
11秒前
11秒前
xx发布了新的文献求助10
12秒前
一一应助机灵水卉采纳,获得10
14秒前
16秒前
112完成签到,获得积分10
17秒前
20秒前
人人发布了新的文献求助10
20秒前
21秒前
ling2001完成签到,获得积分10
22秒前
香蕉觅云应助雪白语海采纳,获得10
23秒前
阿冰发布了新的文献求助10
24秒前
义气钻石完成签到,获得积分10
25秒前
dzz发布了新的文献求助10
25秒前
结实松鼠完成签到 ,获得积分10
25秒前
Kitty完成签到,获得积分10
25秒前
yanna发布了新的文献求助10
25秒前
一一应助yzxzdm采纳,获得20
25秒前
三新荞应助顺利玫瑰采纳,获得10
25秒前
26秒前
26秒前
28秒前
28秒前
28秒前
科研通AI2S应助天天小女孩采纳,获得10
30秒前
31秒前
31秒前
Leslie发布了新的文献求助10
31秒前
虚幻代桃发布了新的文献求助10
32秒前
32秒前
32秒前
科研通AI2S应助Jiu采纳,获得10
34秒前
35秒前
36秒前
从容半仙完成签到,获得积分20
36秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3228233
求助须知:如何正确求助?哪些是违规求助? 2876013
关于积分的说明 8193684
捐赠科研通 2543222
什么是DOI,文献DOI怎么找? 1373580
科研通“疑难数据库(出版商)”最低求助积分说明 646814
邀请新用户注册赠送积分活动 621316