Single-line rail rapid transit timetabling under dynamic passenger demand

元启发式 数学优化 计算 直线(几何图形) 运筹学 动态规划 粒子群优化 计算机科学 工程类 算法 数学 几何学
作者
Eva Barrena,David Canca,Leandro C. Coelho,Gilbert Laporte
出处
期刊:Transportation Research Part B-methodological [Elsevier BV]
卷期号:70: 134-150 被引量:236
标识
DOI:10.1016/j.trb.2014.08.013
摘要

Railway planning is a complex activity which is usually decomposed into several stages, traditionally network design, line design, timetabling, rolling stock, and staffing. In this paper, we study the design and optimization of train timetables for a rail rapid transit (RRT) line adapted to a dynamic demand environment, which focuses on creating convenient timetables for passengers. The objective is to minimize the average passenger waiting time at the stations, thus focusing on passenger welfare. We first propose two mathematical programming formulations which generalize the non-periodic train timetabling problem on a single line under a dynamic demand pattern. We then analyze the properties of the problem before introducing a fast adaptive large neighborhood search (ALNS) metaheuristic in order to solve large instances of the problem within short computation times. The algorithm yields timetables that may not be regular or periodic, but are adjusted to a dynamic demand behavior. Through extensive computational experiments on artificial and real-world based instances, we demonstrate the computational superiority of our ALNS compared with a truncated branch-and-cut algorithm. The average reduction in passenger waiting times is 26%, while the computational time of our metaheuristic is less than 1% of that required by the alternative CPLEX-based algorithm. Out of 120 open instances, we obtain 84 new best known solutions and we reach the optimum on 10 out of 14 instances with known optimal solutions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
攀攀完成签到,获得积分10
刚刚
曾建发布了新的文献求助10
刚刚
3秒前
yiling完成签到,获得积分20
4秒前
我是老大应助可爱的菠萝采纳,获得10
5秒前
一颗小白菜完成签到,获得积分10
6秒前
6秒前
一直发布了新的文献求助10
7秒前
纪震宇发布了新的文献求助10
8秒前
科研通AI5应助念姬采纳,获得10
9秒前
12秒前
xumodehudie完成签到 ,获得积分10
13秒前
小棠完成签到 ,获得积分10
15秒前
纪震宇完成签到,获得积分10
16秒前
烟花应助亲爱的融采纳,获得10
19秒前
魔幻的醉柳完成签到,获得积分10
19秒前
19秒前
Lucas应助xiaoshi采纳,获得10
22秒前
橘子味发布了新的文献求助30
22秒前
江江完成签到,获得积分20
22秒前
辉太狼完成签到,获得积分10
22秒前
23秒前
23秒前
慕青应助一直采纳,获得10
24秒前
小狐狸完成签到,获得积分10
27秒前
29秒前
nuannuan完成签到 ,获得积分10
30秒前
力劈华山完成签到,获得积分10
31秒前
HEIKU完成签到,获得积分0
32秒前
zhyzzz发布了新的文献求助10
32秒前
alive完成签到,获得积分10
32秒前
黄景瑜发布了新的文献求助10
34秒前
zy完成签到,获得积分10
34秒前
35秒前
35秒前
英姑应助白羽佳采纳,获得10
36秒前
斯文败类应助收手吧大哥采纳,获得30
37秒前
明天见完成签到,获得积分10
37秒前
caidun完成签到,获得积分10
38秒前
38秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966448
求助须知:如何正确求助?哪些是违规求助? 3511902
关于积分的说明 11160537
捐赠科研通 3246634
什么是DOI,文献DOI怎么找? 1793425
邀请新用户注册赠送积分活动 874451
科研通“疑难数据库(出版商)”最低求助积分说明 804403