Single-line rail rapid transit timetabling under dynamic passenger demand

元启发式 数学优化 计算 直线(几何图形) 运筹学 动态规划 粒子群优化 计算机科学 工程类 算法 数学 几何学
作者
Eva Barrena,David Canca,Leandro C. Coelho,Gilbert Laporte
出处
期刊:Transportation Research Part B-methodological [Elsevier BV]
卷期号:70: 134-150 被引量:236
标识
DOI:10.1016/j.trb.2014.08.013
摘要

Railway planning is a complex activity which is usually decomposed into several stages, traditionally network design, line design, timetabling, rolling stock, and staffing. In this paper, we study the design and optimization of train timetables for a rail rapid transit (RRT) line adapted to a dynamic demand environment, which focuses on creating convenient timetables for passengers. The objective is to minimize the average passenger waiting time at the stations, thus focusing on passenger welfare. We first propose two mathematical programming formulations which generalize the non-periodic train timetabling problem on a single line under a dynamic demand pattern. We then analyze the properties of the problem before introducing a fast adaptive large neighborhood search (ALNS) metaheuristic in order to solve large instances of the problem within short computation times. The algorithm yields timetables that may not be regular or periodic, but are adjusted to a dynamic demand behavior. Through extensive computational experiments on artificial and real-world based instances, we demonstrate the computational superiority of our ALNS compared with a truncated branch-and-cut algorithm. The average reduction in passenger waiting times is 26%, while the computational time of our metaheuristic is less than 1% of that required by the alternative CPLEX-based algorithm. Out of 120 open instances, we obtain 84 new best known solutions and we reach the optimum on 10 out of 14 instances with known optimal solutions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
test07完成签到,获得积分20
刚刚
七七发布了新的文献求助10
1秒前
研友_VZG7GZ应助吴学仕采纳,获得10
2秒前
领导范儿应助吴学仕采纳,获得10
2秒前
热心醉蝶发布了新的文献求助200
2秒前
egret发布了新的文献求助10
3秒前
3秒前
Jolin发布了新的文献求助10
3秒前
晶晶完成签到,获得积分10
4秒前
4秒前
7秒前
7秒前
7秒前
8秒前
洁净大神完成签到,获得积分10
9秒前
10秒前
浮游应助毛治清采纳,获得10
10秒前
洁净艳一发布了新的文献求助10
10秒前
11秒前
11秒前
小铭完成签到,获得积分10
12秒前
zxxq1229发布了新的文献求助30
12秒前
duck发布了新的文献求助10
13秒前
汉堡包应助云澈采纳,获得10
13秒前
陈高兴完成签到,获得积分10
13秒前
Wuc发布了新的文献求助10
13秒前
小白发布了新的文献求助10
14秒前
月蚀六花发布了新的文献求助10
14秒前
天天快乐应助小谢谢谢谢采纳,获得10
14秒前
14秒前
14秒前
miqiqi发布了新的文献求助10
15秒前
15秒前
JSM发布了新的文献求助300
15秒前
科研通AI5应助周城采纳,获得10
16秒前
上官若男应助明理的书桃采纳,获得10
16秒前
16秒前
16秒前
李健应助darling采纳,获得10
16秒前
Watsun发布了新的文献求助50
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5061433
求助须知:如何正确求助?哪些是违规求助? 4285459
关于积分的说明 13354590
捐赠科研通 4103331
什么是DOI,文献DOI怎么找? 2246615
邀请新用户注册赠送积分活动 1252277
关于科研通互助平台的介绍 1183203