Application of Artificial Neural Networks (ANNs) in Drying Technology: A Comprehensive Review

人工神经网络 工艺工程 渗透脱水 计算机科学 人工智能 感知器 传质 机器学习 工程类 化学 色谱法
作者
Mortaza Aghbashlo,Soleiman Hosseinpour,Arun S. Mujumdar
出处
期刊:Drying Technology [Informa]
卷期号:33 (12): 1397-1462 被引量:138
标识
DOI:10.1080/07373937.2015.1036288
摘要

Inspired by the functional behavior of the biological nervous system of the human brain, the artificial neural network (ANN) has found many applications as a superior tool to model complex, dynamic, highly nonlinear, and ill-defined scientific and engineering problems. For this reason, ANNs are employed extensively in drying applications because of their favorable characteristics, such as efficiency, generalization, and simplicity. This article presents a comprehensive review of numerous significant applications of the ANN technique to solve problems of nonlinear function approximation, pattern detection, data interpretation, optimization, simulation, diagnosis, control, data sorting, clustering, and noise reduction in drying technology. We summarize the use of the ANN approach in modeling various dehydration methods; e.g., batch convective thin-layer drying, fluidized bed drying, osmotic dehydration, osmotic-convective drying, infrared, microwave, infrared- and microwave-assisted drying processes, spray drying, freeze drying, rotary drying, renewable drying, deep bed drying, spout bed drying, industrial drying, and several miscellaneous applications. Generally, ANNs have been used in drying technology for modeling, predicting, and optimization of heat and mass transfer, thermodynamic performance parameters, and quality indicators as well as physiochemical properties of dried products. Moreover, a limited number of researchers have focused on control of drying systems to achieve desired product quality by online manipulating of the drying conditions using previously trained ANNs. Opportunities and limitations of the ANN technique for drying process simulation, optimization, and control are outlined to guide future R&D in this area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
曦月发布了新的文献求助10
刚刚
JamesPei应助121采纳,获得10
1秒前
Phosphene应助卡沙巴采纳,获得10
1秒前
1秒前
秋水完成签到 ,获得积分10
2秒前
2秒前
完美世界应助迅速的孤容采纳,获得100
3秒前
大晟归来完成签到,获得积分10
4秒前
meizi发布了新的文献求助10
4秒前
科研通AI2S应助chen有理采纳,获得10
4秒前
小马甲应助chen有理采纳,获得10
4秒前
旭宝儿完成签到,获得积分10
5秒前
5秒前
Lucas应助yl采纳,获得10
5秒前
eeeee发布了新的文献求助10
6秒前
7秒前
wyf应助小小怪国王采纳,获得10
7秒前
hsq15123完成签到 ,获得积分10
7秒前
wdb1816发布了新的文献求助20
9秒前
9秒前
33完成签到,获得积分10
9秒前
雪竹关注了科研通微信公众号
10秒前
10秒前
10秒前
10秒前
公爵发布了新的文献求助10
11秒前
英俊的铭应助豆子采纳,获得10
11秒前
11秒前
yuxueL关注了科研通微信公众号
11秒前
多吃蔬菜发布了新的文献求助10
12秒前
RoyChen发布了新的文献求助10
12秒前
hahahayi完成签到,获得积分10
12秒前
13秒前
Wududu发布了新的文献求助30
13秒前
qinzx完成签到,获得积分10
14秒前
kento驳回了Frank应助
14秒前
14秒前
纪外绣发布了新的文献求助10
15秒前
15秒前
16秒前
高分求助中
Sustainability in Tides Chemistry 2000
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 700
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 700
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3101533
求助须知:如何正确求助?哪些是违规求助? 2752887
关于积分的说明 7621487
捐赠科研通 2405329
什么是DOI,文献DOI怎么找? 1276241
科研通“疑难数据库(出版商)”最低求助积分说明 616705
版权声明 599076