生物
炎症
转录因子
癌变
IκB激酶
信号转导
NFKB1型
NF-κB
生物能学
免疫系统
细胞生物学
癌症
免疫学
遗传学
线粒体
基因
作者
Laura Tornatore,Anil K. Thotakura,Jason Bennett,Marta Moretti,Guido Franzoso
标识
DOI:10.1016/j.tcb.2012.08.001
摘要
Nuclear factor kappa B (NF-κB) transcription factors are evolutionarily conserved, coordinating regulators of immune and inflammatory responses. They also play a pivotal role in oncogenesis and metabolic disorders. Several studies during the past two decades have highlighted the key role of the IKK/NF-κB pathway in the induction and maintenance of the state of inflammation that underlies metabolic diseases such as obesity and type 2 diabetes. Recent reports, however, reveal an even more intimate connection between NF-κB and metabolism. These studies demonstrate that NF-κB regulates energy homeostasis via direct engagement of the cellular networks governing glycolysis and respiration, with profound implications beyond metabolic diseases, including cancer, ageing and anticancer therapy. In this review, we discuss these emerging bioenergetic functions of NF-κB and their significance to oncogenesis. Nuclear factor kappa B (NF-κB) transcription factors are evolutionarily conserved, coordinating regulators of immune and inflammatory responses. They also play a pivotal role in oncogenesis and metabolic disorders. Several studies during the past two decades have highlighted the key role of the IKK/NF-κB pathway in the induction and maintenance of the state of inflammation that underlies metabolic diseases such as obesity and type 2 diabetes. Recent reports, however, reveal an even more intimate connection between NF-κB and metabolism. These studies demonstrate that NF-κB regulates energy homeostasis via direct engagement of the cellular networks governing glycolysis and respiration, with profound implications beyond metabolic diseases, including cancer, ageing and anticancer therapy. In this review, we discuss these emerging bioenergetic functions of NF-κB and their significance to oncogenesis.
科研通智能强力驱动
Strongly Powered by AbleSci AI