工作量
数据包络分析
生产力
约束(计算机辅助设计)
人力资源
人力资源管理
情感(语言学)
运营管理
计算机科学
心理学
工程类
知识管理
统计
数学
经济
机械工程
管理
沟通
宏观经济学
操作系统
作者
Shiow-Yun Chang,Tien-Hui Chen
标识
DOI:10.1016/j.ergon.2006.06.003
摘要
The study investigates a method of the extended data envelopment analysis (DEA) model to discriminate relative workload level within a group of employees, in which subjective subscales are introduced. The model chooses the most favorable set of weights under the constraint for each employee. Hence, the workload scores calculated by the extended DEA model are more considerate and friendly to employees than the method in which weights are determined by individual judgment. The proposed approach eliminates the need to specify a priori weights for each assessing factor, and it can discriminate relative workload among employees and help managers making decisions with regard to suitable human resource practices to strengthen employee capability and achieve higher performance. Assessing workload is an important issue in the management and health of employees. A long-term heavy workload can affect an employee's physical or mental health, performance, or productivity. A heavy workload is a component of job stress and has a negative impact on turnover. This loss of employees and their output leads to higher costs for an organization. After understanding the relative overall workload level within a group of employees, the manager can reassign tasks to level the workload and make informed decisions about human resource practices, such as in-service education or job rotation to strengthen employee capability and achieve higher performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI