清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A latent class analysis of job satisfaction and turnover among practicing pharmacists

潜在类模型 工作满意度 离职意向 班级(哲学) 心理学 计算机科学 统计 数学 社会心理学 人工智能
作者
Patrick C. Hardigan,Nisaratana Sangasubana
出处
期刊:Research in Social & Administrative Pharmacy [Elsevier]
卷期号:6 (1): 32-38 被引量:26
标识
DOI:10.1016/j.sapharm.2009.03.002
摘要

Research on job satisfaction and turnover using latent class analysis (LCA) has been conducted in other disciplines. LCA has seldom been applied to social pharmacy research and may be especially useful for examining job situation constructs in pharmacy organizations.The objective of the study was to determine the probability of turnover among practicing pharmacists using LCA.Using a cross-sectional descriptive design, 2400 randomly selected pharmacists with active licenses in Florida were surveyed. A model was created using LCA, then fit indices were used to determine whether underlying "job satisfaction clusters" were present. Once identified, these clusters along with the covariate practice site were modeled on a distal outcome turnover.A 5-class model appeared to best fit the data: a "pseudo-satisfied" class that contained 8% of the sample, a "career-goal" class that contained 11% of the sample, a "satisfied class" that contained 44% of the sample, a "job-expectation" class that contained 3% of the sample, and an "unsatisfied class" that contained 17% of the sample. In terms of predicting the distal outcome "turnover," the calculated odds ratios indicate that compared with class 3 or the satisfied group, class 2 was 14 times more likely, class 4 was 17 times more likely, and class 5 was 26 times more likely to state that they do not intend to be employed with their current employer 1 year from now.The LCA method was found to be effective for finding relevant subgroups with a heterogeneous at-risk population for turnover. Results from the analysis indicate that job satisfaction may be parsed into smaller, more interpretable and useful subgroups. This result holds great promise for practitioners and researchers, alike.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Shadow完成签到 ,获得积分10
7秒前
飞云完成签到 ,获得积分10
12秒前
王kk完成签到 ,获得积分10
16秒前
香蕉觅云应助春华秋实采纳,获得10
26秒前
Fred Guan完成签到 ,获得积分10
29秒前
深情的凝云完成签到 ,获得积分10
47秒前
轻松的飞阳完成签到 ,获得积分10
57秒前
FashionBoy应助xun采纳,获得10
58秒前
斯文败类应助科研通管家采纳,获得10
1分钟前
Sunny完成签到 ,获得积分10
1分钟前
诗蕊完成签到 ,获得积分0
1分钟前
Driscoll完成签到 ,获得积分10
1分钟前
高高代珊完成签到 ,获得积分10
1分钟前
wangeil007完成签到,获得积分10
1分钟前
途啊哈哈完成签到,获得积分10
2分钟前
WYnini完成签到 ,获得积分10
2分钟前
空2完成签到 ,获得积分10
2分钟前
双眼皮跳蚤完成签到,获得积分10
2分钟前
小王同学完成签到 ,获得积分10
2分钟前
安然完成签到 ,获得积分10
2分钟前
2分钟前
xun发布了新的文献求助10
2分钟前
2分钟前
科研搬运工完成签到,获得积分10
2分钟前
wyh295352318完成签到 ,获得积分10
2分钟前
春华秋实发布了新的文献求助10
2分钟前
春华秋实完成签到,获得积分10
2分钟前
陆林北完成签到,获得积分10
2分钟前
2分钟前
快乐的完成签到 ,获得积分10
3分钟前
天涯眷客发布了新的文献求助10
3分钟前
爱静静应助科研通管家采纳,获得30
3分钟前
3分钟前
玛琳卡迪马完成签到,获得积分10
3分钟前
陆黑暗完成签到 ,获得积分10
3分钟前
ZYN完成签到,获得积分10
3分钟前
你好完成签到 ,获得积分10
3分钟前
霁昕完成签到 ,获得积分10
4分钟前
aiyawy完成签到 ,获得积分10
4分钟前
平常从蓉完成签到,获得积分10
4分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137039
求助须知:如何正确求助?哪些是违规求助? 2788014
关于积分的说明 7784284
捐赠科研通 2444088
什么是DOI,文献DOI怎么找? 1299724
科研通“疑难数据库(出版商)”最低求助积分说明 625522
版权声明 600999