Chapter 74 Implementing Nonparametric and Semiparametric Estimators

非参数统计 估计员 半参数回归 参数统计 半参数模型 维数之咒 计量经济学 维数(图论) 参数化模型 分位数 加性模型 计算机科学 数学优化 数学 统计 人工智能 纯数学
作者
Hidehiko Ichimura,Petra Todd
出处
期刊:Handbook of Econometrics 卷期号:: 5369-5468 被引量:53
标识
DOI:10.1016/s1573-4412(07)06074-6
摘要

This chapter reviews recent advances in nonparametric and semiparametric estimation, with an emphasis on applicability to empirical research and on resolving issues that arise in implementation. It considers techniques for estimating densities, conditional mean functions, derivatives of functions and conditional quantiles in a flexible way that imposes minimal functional form assumptions. The chapter begins by illustrating how flexible modeling methods have been applied in empirical research, drawing on recent examples of applications from labor economics, consumer demand estimation and treatment effects models. Then, key concepts in semiparametric and nonparametric modeling are introduced that do not have counterparts in parametric modeling, such as the so-called curse of dimensionality, the notion of models with an infinite number of parameters, the criteria used to define optimal convergence rates, and "dimension-free" estimators. After defining these new concepts, a large literature on nonparametric estimation is reviewed and a unifying framework presented for thinking about how different approaches relate to one another. Local polynomial estimators are discussed in detail and their distribution theory is developed. The chapter then shows how nonparametric estimators form the building blocks for many semiparametric estimators, such as estimators for average derivatives, index models, partially linear models, and additively separable models. Semiparametric methods offer a middle ground between fully nonparametric and parametric approaches. Their main advantage is that they typically achieve faster rates of convergence than fully nonparametric approaches. In many cases, they converge at the parametric rate. The second part of the chapter considers in detail two issues that are central with regard to implementing flexible modeling methods: how to select the values of smoothing parameters in an optimal way and how to implement "trimming" procedures. It also reviews newly developed techniques for deriving the distribution theory of semiparametric estimators. The chapter concludes with an overview of approximation methods that speed up the computation of nonparametric estimates and make flexible estimation feasible even in very large size samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nuomi发布了新的文献求助10
1秒前
exquisite发布了新的文献求助30
1秒前
笑点低诗桃完成签到,获得积分20
1秒前
林狗完成签到,获得积分10
1秒前
2秒前
希望天下0贩的0应助学习采纳,获得10
2秒前
2秒前
小蘑菇应助蓝色斑马采纳,获得10
4秒前
6秒前
8秒前
8秒前
123完成签到 ,获得积分10
9秒前
qiuiqiu1111完成签到,获得积分10
9秒前
丘比特应助笑点低诗桃采纳,获得10
10秒前
佳佳应助Leeny采纳,获得10
10秒前
10秒前
西瓜二郎发布了新的文献求助10
10秒前
MingQue完成签到,获得积分10
10秒前
10秒前
林非鹿完成签到 ,获得积分10
12秒前
沉默诗兰发布了新的文献求助10
13秒前
13秒前
星辰大海应助lalaland采纳,获得10
13秒前
小陈发布了新的文献求助10
16秒前
冰柠檬发布了新的文献求助10
16秒前
SciGPT应助小玉采纳,获得10
17秒前
学习发布了新的文献求助10
17秒前
苏诗兰完成签到,获得积分10
17秒前
Shanglinqin完成签到,获得积分10
20秒前
Sun完成签到,获得积分10
20秒前
20秒前
田様应助夏天的蜜雪冰城采纳,获得10
21秒前
超体完成签到 ,获得积分10
21秒前
21秒前
一只完成签到,获得积分10
21秒前
SciGPT应助超靓诺言采纳,获得10
22秒前
22秒前
22秒前
小陈完成签到,获得积分10
23秒前
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966777
求助须知:如何正确求助?哪些是违规求助? 3512284
关于积分的说明 11162496
捐赠科研通 3247199
什么是DOI,文献DOI怎么找? 1793690
邀请新用户注册赠送积分活动 874588
科研通“疑难数据库(出版商)”最低求助积分说明 804432