Chapter 74 Implementing Nonparametric and Semiparametric Estimators

非参数统计 估计员 半参数回归 参数统计 半参数模型 维数之咒 计量经济学 维数(图论) 参数化模型 分位数 加性模型 计算机科学 数学优化 数学 统计 人工智能 纯数学
作者
Hidehiko Ichimura,Petra Todd
出处
期刊:Handbook of Econometrics 卷期号:: 5369-5468 被引量:53
标识
DOI:10.1016/s1573-4412(07)06074-6
摘要

This chapter reviews recent advances in nonparametric and semiparametric estimation, with an emphasis on applicability to empirical research and on resolving issues that arise in implementation. It considers techniques for estimating densities, conditional mean functions, derivatives of functions and conditional quantiles in a flexible way that imposes minimal functional form assumptions. The chapter begins by illustrating how flexible modeling methods have been applied in empirical research, drawing on recent examples of applications from labor economics, consumer demand estimation and treatment effects models. Then, key concepts in semiparametric and nonparametric modeling are introduced that do not have counterparts in parametric modeling, such as the so-called curse of dimensionality, the notion of models with an infinite number of parameters, the criteria used to define optimal convergence rates, and "dimension-free" estimators. After defining these new concepts, a large literature on nonparametric estimation is reviewed and a unifying framework presented for thinking about how different approaches relate to one another. Local polynomial estimators are discussed in detail and their distribution theory is developed. The chapter then shows how nonparametric estimators form the building blocks for many semiparametric estimators, such as estimators for average derivatives, index models, partially linear models, and additively separable models. Semiparametric methods offer a middle ground between fully nonparametric and parametric approaches. Their main advantage is that they typically achieve faster rates of convergence than fully nonparametric approaches. In many cases, they converge at the parametric rate. The second part of the chapter considers in detail two issues that are central with regard to implementing flexible modeling methods: how to select the values of smoothing parameters in an optimal way and how to implement "trimming" procedures. It also reviews newly developed techniques for deriving the distribution theory of semiparametric estimators. The chapter concludes with an overview of approximation methods that speed up the computation of nonparametric estimates and make flexible estimation feasible even in very large size samples.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
喜悦的母鸡完成签到,获得积分10
刚刚
我是老大应助侯天宇采纳,获得10
1秒前
Anita发布了新的文献求助10
1秒前
serenity完成签到 ,获得积分10
1秒前
FashionBoy应助愉快道之采纳,获得10
1秒前
1秒前
cola完成签到 ,获得积分10
2秒前
2秒前
2秒前
2秒前
pukej发布了新的文献求助10
2秒前
wudidafei发布了新的文献求助10
2秒前
2秒前
儒雅书雪发布了新的文献求助10
3秒前
Zzzzzz发布了新的文献求助10
3秒前
科研通AI6应助七七采纳,获得10
3秒前
chenamy发布了新的文献求助10
4秒前
Lucas应助木光采纳,获得10
4秒前
4秒前
次我完成签到,获得积分10
4秒前
英俊雪曼发布了新的文献求助10
4秒前
田様应助孙明振采纳,获得10
5秒前
狗焕发布了新的文献求助10
5秒前
5秒前
7秒前
steelorange完成签到,获得积分10
7秒前
如意土豆完成签到 ,获得积分10
7秒前
濮阳盼曼发布了新的文献求助10
7秒前
anwen发布了新的文献求助30
7秒前
昏睡的蟠桃应助Zkxxxx采纳,获得200
7秒前
香蕉觅云应助Zkxxxx采纳,获得10
7秒前
aimppp发布了新的文献求助10
8秒前
JamesPei应助孙萌萌采纳,获得10
9秒前
秦罗敷应助前进的小宅熊采纳,获得10
9秒前
yumi完成签到 ,获得积分10
10秒前
10秒前
雪梨发布了新的文献求助10
10秒前
ASDS完成签到,获得积分10
11秒前
dogpij完成签到 ,获得积分10
11秒前
完美世界应助Itsdami采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
Improving Teacher Morale and Motivation 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5557012
求助须知:如何正确求助?哪些是违规求助? 4642238
关于积分的说明 14667070
捐赠科研通 4583696
什么是DOI,文献DOI怎么找? 2514330
邀请新用户注册赠送积分活动 1488678
关于科研通互助平台的介绍 1459324