Chapter 74 Implementing Nonparametric and Semiparametric Estimators

非参数统计 估计员 半参数回归 参数统计 半参数模型 维数之咒 计量经济学 维数(图论) 参数化模型 分位数 加性模型 计算机科学 数学优化 数学 统计 人工智能 纯数学
作者
Hidehiko Ichimura,Petra Todd
出处
期刊:Handbook of Econometrics 卷期号:: 5369-5468 被引量:53
标识
DOI:10.1016/s1573-4412(07)06074-6
摘要

This chapter reviews recent advances in nonparametric and semiparametric estimation, with an emphasis on applicability to empirical research and on resolving issues that arise in implementation. It considers techniques for estimating densities, conditional mean functions, derivatives of functions and conditional quantiles in a flexible way that imposes minimal functional form assumptions. The chapter begins by illustrating how flexible modeling methods have been applied in empirical research, drawing on recent examples of applications from labor economics, consumer demand estimation and treatment effects models. Then, key concepts in semiparametric and nonparametric modeling are introduced that do not have counterparts in parametric modeling, such as the so-called curse of dimensionality, the notion of models with an infinite number of parameters, the criteria used to define optimal convergence rates, and "dimension-free" estimators. After defining these new concepts, a large literature on nonparametric estimation is reviewed and a unifying framework presented for thinking about how different approaches relate to one another. Local polynomial estimators are discussed in detail and their distribution theory is developed. The chapter then shows how nonparametric estimators form the building blocks for many semiparametric estimators, such as estimators for average derivatives, index models, partially linear models, and additively separable models. Semiparametric methods offer a middle ground between fully nonparametric and parametric approaches. Their main advantage is that they typically achieve faster rates of convergence than fully nonparametric approaches. In many cases, they converge at the parametric rate. The second part of the chapter considers in detail two issues that are central with regard to implementing flexible modeling methods: how to select the values of smoothing parameters in an optimal way and how to implement "trimming" procedures. It also reviews newly developed techniques for deriving the distribution theory of semiparametric estimators. The chapter concludes with an overview of approximation methods that speed up the computation of nonparametric estimates and make flexible estimation feasible even in very large size samples.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助啦啦啦采纳,获得10
刚刚
mf发布了新的文献求助10
刚刚
刚刚
龚成明完成签到 ,获得积分10
刚刚
星辰大海应助西海岸的风采纳,获得10
刚刚
1秒前
2秒前
天天快乐应助LS采纳,获得10
2秒前
3秒前
3秒前
一岁一礼给一岁一礼的求助进行了留言
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
kabayi发布了新的文献求助10
6秒前
令狐擎宇发布了新的文献求助10
7秒前
Jie发布了新的文献求助10
7秒前
古琴残梦发布了新的文献求助10
8秒前
阳光乌冬面完成签到,获得积分10
8秒前
bitter发布了新的文献求助30
8秒前
留白留白发布了新的文献求助10
9秒前
阔达的易槐完成签到,获得积分10
9秒前
9秒前
danjuan完成签到 ,获得积分10
9秒前
默默善愁发布了新的文献求助10
11秒前
11秒前
令狐擎宇完成签到,获得积分10
12秒前
李伟完成签到,获得积分20
12秒前
12秒前
董先生发布了新的文献求助10
13秒前
13秒前
Owen应助顺心向松采纳,获得10
16秒前
留白留白完成签到,获得积分10
17秒前
orixero应助科研通管家采纳,获得10
19秒前
桐桐应助科研通管家采纳,获得10
19秒前
19秒前
大龙哥886应助科研通管家采纳,获得10
19秒前
打打应助科研通管家采纳,获得10
19秒前
香蕉觅云应助科研通管家采纳,获得10
19秒前
搜集达人应助科研通管家采纳,获得10
19秒前
蓝天应助科研通管家采纳,获得10
19秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620667
求助须知:如何正确求助?哪些是违规求助? 4705247
关于积分的说明 14930934
捐赠科研通 4762530
什么是DOI,文献DOI怎么找? 2551078
邀请新用户注册赠送积分活动 1513735
关于科研通互助平台的介绍 1474655