Chapter 74 Implementing Nonparametric and Semiparametric Estimators

非参数统计 估计员 半参数回归 参数统计 半参数模型 维数之咒 计量经济学 维数(图论) 参数化模型 分位数 加性模型 计算机科学 数学优化 数学 统计 人工智能 纯数学
作者
Hidehiko Ichimura,Petra Todd
出处
期刊:Handbook of Econometrics 卷期号:: 5369-5468 被引量:53
标识
DOI:10.1016/s1573-4412(07)06074-6
摘要

This chapter reviews recent advances in nonparametric and semiparametric estimation, with an emphasis on applicability to empirical research and on resolving issues that arise in implementation. It considers techniques for estimating densities, conditional mean functions, derivatives of functions and conditional quantiles in a flexible way that imposes minimal functional form assumptions. The chapter begins by illustrating how flexible modeling methods have been applied in empirical research, drawing on recent examples of applications from labor economics, consumer demand estimation and treatment effects models. Then, key concepts in semiparametric and nonparametric modeling are introduced that do not have counterparts in parametric modeling, such as the so-called curse of dimensionality, the notion of models with an infinite number of parameters, the criteria used to define optimal convergence rates, and "dimension-free" estimators. After defining these new concepts, a large literature on nonparametric estimation is reviewed and a unifying framework presented for thinking about how different approaches relate to one another. Local polynomial estimators are discussed in detail and their distribution theory is developed. The chapter then shows how nonparametric estimators form the building blocks for many semiparametric estimators, such as estimators for average derivatives, index models, partially linear models, and additively separable models. Semiparametric methods offer a middle ground between fully nonparametric and parametric approaches. Their main advantage is that they typically achieve faster rates of convergence than fully nonparametric approaches. In many cases, they converge at the parametric rate. The second part of the chapter considers in detail two issues that are central with regard to implementing flexible modeling methods: how to select the values of smoothing parameters in an optimal way and how to implement "trimming" procedures. It also reviews newly developed techniques for deriving the distribution theory of semiparametric estimators. The chapter concludes with an overview of approximation methods that speed up the computation of nonparametric estimates and make flexible estimation feasible even in very large size samples.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
游一发布了新的文献求助10
1秒前
慕青应助seanx采纳,获得10
1秒前
1秒前
雨中小王应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得30
1秒前
2秒前
雨中小王应助科研通管家采纳,获得10
2秒前
不配.应助科研通管家采纳,获得200
2秒前
李健应助科研通管家采纳,获得10
2秒前
上官若男应助科研通管家采纳,获得10
2秒前
Orange应助科研通管家采纳,获得10
2秒前
SciGPT应助科研通管家采纳,获得10
2秒前
852应助科研通管家采纳,获得10
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
BowieHuang应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
2秒前
Pendragon发布了新的文献求助10
3秒前
3秒前
3秒前
魔法少女猪壮壮完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
星期五完成签到,获得积分10
5秒前
阁主完成签到,获得积分10
6秒前
传奇3应助dd采纳,获得10
6秒前
乐乐应助汤婆婆采纳,获得10
7秒前
苹果亦巧完成签到,获得积分10
7秒前
....完成签到 ,获得积分10
7秒前
严婉蓉完成签到 ,获得积分10
7秒前
8秒前
Genius发布了新的文献求助10
8秒前
科目三应助66采纳,获得10
8秒前
FashionBoy应助berg采纳,获得10
9秒前
小鱼美美发布了新的文献求助10
11秒前
星辰大海应助苹果亦巧采纳,获得30
11秒前
全明星阿杜完成签到,获得积分10
12秒前
YTWen完成签到,获得积分10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5594267
求助须知:如何正确求助?哪些是违规求助? 4679962
关于积分的说明 14812493
捐赠科研通 4646674
什么是DOI,文献DOI怎么找? 2534851
邀请新用户注册赠送积分活动 1502831
关于科研通互助平台的介绍 1469497