Numerical Simulations on Piezoresistivity of CNT/Polymer Based Nanocomposites

纳米复合材料 材料科学 电阻器 复合材料 碳纳米管 量子隧道 电阻率和电导率 电阻和电导 聚合物纳米复合材料 聚合物 电气工程 光电子学 电压 工程类
作者
Alamusi Alamusi,Y.L. Liu,Ning Hu
出处
期刊:Cmc-computers Materials & Continua 卷期号:16 (2): 101-118 被引量:33
标识
DOI:10.3970/icces.2011.016.057
摘要

Summary In this work, we propose a 3 dimensional (3D) numerical model to predict the piezoresistivity behaviours of a nanocomposite material made from an insulating polymer filled by carbon nanotubes (CNTs). This material is very hopeful for its application in highly sensitive strain sensor by measuring its piezoresistivity, i.e., the ratio of resistance change versus applied strain. In this numerical approach, a 3D resistor network model is firstly proposed to predict the electrical conductivity of the nanocomposite with a large amount of randomly dispersed CNTs under the zero strain state. By focusing on the fact that the piezoresistivity of the nanocomposite is largely influenced by the tunnelling effects among neighbouring CNTs, we modify this 3D resistor network model by adding the tunnelling resistance between those neighbouring CNTs within the cut-off distance of tunnelling effect, i.e., 1nm in this study. The predicted electrical conductivities by this modified 3D resistor network model are verified experimentally. Furthermore, to analyze the piezoresistivity of nanocomposite under various strain levels, this modified 3D resistor network model is further combined with a fibre reorientation model, which is used to track the orientation and network change of rigid-body CNTs in the nanocomposite under applied strain. This combined model is employed to predict the piezoresistivity of the nanocomposite iteratively corresponding to various strain levels with the experimental verifications. Some key parameters, which control the piezoresistivity behaviour, such as, cross sectional area of tunnel current, height of barrier, orientation of CNTs, and electrical conductivity of CNTs and other nanofillers, are systematically investigated. The obtained results are very valuable, which can provide a guidance for designing the strain sensor of this nanocomposite with enhanced sensitivity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
复杂语山发布了新的文献求助10
刚刚
勤奋尔丝完成签到 ,获得积分10
刚刚
jiejie完成签到,获得积分10
刚刚
赵淑敏完成签到,获得积分10
1秒前
xzy完成签到,获得积分10
1秒前
1秒前
ksu发布了新的文献求助10
1秒前
沈平灵完成签到,获得积分10
1秒前
666发布了新的文献求助10
2秒前
3秒前
Rez完成签到,获得积分10
3秒前
科研通AI5应助nteicu采纳,获得10
3秒前
3秒前
华仔应助忧郁盼夏采纳,获得10
4秒前
mark163完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
科研通AI2S应助斯文以蓝采纳,获得10
4秒前
Qian发布了新的文献求助10
4秒前
ZL张莉发布了新的文献求助10
4秒前
Camellia完成签到,获得积分10
5秒前
5秒前
lovehao完成签到 ,获得积分10
5秒前
silstorm发布了新的文献求助10
5秒前
失眠夏山发布了新的文献求助20
5秒前
rich完成签到,获得积分10
5秒前
ANXU完成签到,获得积分20
6秒前
yangyang发布了新的文献求助10
6秒前
中岛悠斗完成签到,获得积分10
6秒前
香蕉发布了新的文献求助10
6秒前
雪原白鹿完成签到 ,获得积分10
6秒前
自信的网络完成签到 ,获得积分10
6秒前
Jin完成签到,获得积分10
6秒前
strangeliu完成签到,获得积分10
6秒前
落后紫夏完成签到,获得积分10
7秒前
7秒前
00K发布了新的文献求助10
8秒前
zzz完成签到,获得积分10
8秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969033
求助须知:如何正确求助?哪些是违规求助? 3513900
关于积分的说明 11170818
捐赠科研通 3249256
什么是DOI,文献DOI怎么找? 1794708
邀请新用户注册赠送积分活动 875326
科研通“疑难数据库(出版商)”最低求助积分说明 804759