Numerical Simulations on Piezoresistivity of CNT/Polymer Based Nanocomposites

纳米复合材料 材料科学 电阻器 复合材料 碳纳米管 量子隧道 电阻率和电导率 电阻和电导 聚合物纳米复合材料 聚合物 电气工程 光电子学 电压 工程类
作者
Alamusi Alamusi,Y.L. Liu,Ning Hu
出处
期刊:Cmc-computers Materials & Continua 卷期号:16 (2): 101-118 被引量:33
标识
DOI:10.3970/icces.2011.016.057
摘要

Summary In this work, we propose a 3 dimensional (3D) numerical model to predict the piezoresistivity behaviours of a nanocomposite material made from an insulating polymer filled by carbon nanotubes (CNTs). This material is very hopeful for its application in highly sensitive strain sensor by measuring its piezoresistivity, i.e., the ratio of resistance change versus applied strain. In this numerical approach, a 3D resistor network model is firstly proposed to predict the electrical conductivity of the nanocomposite with a large amount of randomly dispersed CNTs under the zero strain state. By focusing on the fact that the piezoresistivity of the nanocomposite is largely influenced by the tunnelling effects among neighbouring CNTs, we modify this 3D resistor network model by adding the tunnelling resistance between those neighbouring CNTs within the cut-off distance of tunnelling effect, i.e., 1nm in this study. The predicted electrical conductivities by this modified 3D resistor network model are verified experimentally. Furthermore, to analyze the piezoresistivity of nanocomposite under various strain levels, this modified 3D resistor network model is further combined with a fibre reorientation model, which is used to track the orientation and network change of rigid-body CNTs in the nanocomposite under applied strain. This combined model is employed to predict the piezoresistivity of the nanocomposite iteratively corresponding to various strain levels with the experimental verifications. Some key parameters, which control the piezoresistivity behaviour, such as, cross sectional area of tunnel current, height of barrier, orientation of CNTs, and electrical conductivity of CNTs and other nanofillers, are systematically investigated. The obtained results are very valuable, which can provide a guidance for designing the strain sensor of this nanocomposite with enhanced sensitivity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
东方耀发布了新的文献求助10
刚刚
雅2018完成签到 ,获得积分0
1秒前
1秒前
小二郎应助LiuYinglong采纳,获得10
1秒前
2秒前
3秒前
3秒前
4秒前
4秒前
龙龙发布了新的文献求助10
6秒前
6秒前
三冬四夏完成签到,获得积分10
9秒前
9秒前
Pineapple发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
甜甜玫瑰应助dabaan采纳,获得10
11秒前
12秒前
14秒前
亚蛋超可爱完成签到 ,获得积分10
15秒前
15秒前
16秒前
Hhh完成签到,获得积分10
16秒前
17秒前
17秒前
17秒前
18秒前
18秒前
19秒前
坚强的多嘴小蘑菇完成签到,获得积分10
19秒前
19秒前
19秒前
柒z完成签到,获得积分10
20秒前
20秒前
糖果雨完成签到,获得积分10
20秒前
20秒前
Pineapple完成签到,获得积分10
20秒前
小二郎应助专注的映萱采纳,获得10
21秒前
21秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3154309
求助须知:如何正确求助?哪些是违规求助? 2805114
关于积分的说明 7863632
捐赠科研通 2463326
什么是DOI,文献DOI怎么找? 1311205
科研通“疑难数据库(出版商)”最低求助积分说明 629506
版权声明 601821