残余物
趋同(经济学)
身份(音乐)
残差神经网络
一般化
块(置换群论)
编码(集合论)
图层(电子)
理论计算机科学
人工智能
模式识别(心理学)
计算机科学
程序设计语言
数学
算法
几何学
有机化学
化学
集合(抽象数据类型)
经济
数学分析
物理
经济增长
声学
作者
Kaiming He,Xiangyu Zhang,Shaoqing Ren,Jian Sun
标识
DOI:10.1007/978-3-319-46493-0_38
摘要
Deep residual networks have emerged as a family of extremely deep architectures showing compelling accuracy and nice convergence behaviors. In this paper, we analyze the propagation formulations behind the residual building blocks, which suggest that the forward and backward signals can be directly propagated from one block to any other block, when using identity mappings as the skip connections and after-addition activation. A series of ablation experiments support the importance of these identity mappings. This motivates us to propose a new residual unit, which makes training easier and improves generalization. We report improved results using a 1001-layer ResNet on CIFAR-10 (4.62 % error) and CIFAR-100, and a 200-layer ResNet on ImageNet. Code is available at: https://github.com/KaimingHe/resnet-1k-layers .
科研通智能强力驱动
Strongly Powered by AbleSci AI