Hyperspectral image segmentation using spatial-spectral graphs

高光谱成像 计算机科学 人工智能 模式识别(心理学) 分割 图像分割 光谱聚类 像素 空间分析 多光谱图像 计算机视觉 图形 光谱带 光谱成像 聚类分析
作者
David Gillis,Jeffrey H. Bowles
出处
期刊:Proceedings of SPIE 卷期号:8390: 527-537 被引量:35
标识
DOI:10.1117/12.919743
摘要

Spectral graph theory has proven to be a useful tool in the analysis of high-dimensional data sets. Recall that, mathematically, a graph is a collection of objects (nodes) and connections between them (edges); a weighted graph additionally assigns numerical values (weights) to the edges. Graphs are represented by their adjacency whose elements are the weights between the nodes. Spectral graph theory uses the eigendecomposition of the adjacency matrix (or, more generally, the Laplacian of the graph) to derive information about the underlying graph. In this paper, we develop a spectral method based on the 'normalized cuts' algorithm to segment hyperspectral image data (HSI). In particular, we model an image as a weighted graph whose nodes are the image pixels, and edges defined as connecting spatial neighbors; the edge weights are given by a weighted combination of the spatial and spectral distances between nodes. We then use the Laplacian of the graph to recursively segment the image. The advantages of our approach are that, first, the graph structure naturally incorporates both the spatial and spectral information present in HSI; also, by using only spatial neighbors, the adjacency matrix is highly sparse; as a result, it is possible to apply our technique to much larger images than previous techniques. In the paper, we present the details of our algorithm, and include experimental results from a variety of hyperspectral images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小二郎应助愉快的鞯采纳,获得10
1秒前
协和_子鱼发布了新的文献求助10
1秒前
1秒前
1秒前
Danboard发布了新的文献求助10
1秒前
HC完成签到 ,获得积分10
2秒前
小智完成签到,获得积分20
2秒前
2秒前
HopeStar发布了新的文献求助10
2秒前
2秒前
2秒前
所所应助Southluuu采纳,获得10
3秒前
摆烂fish完成签到,获得积分10
3秒前
神勇的雅香应助务实大船采纳,获得10
3秒前
www完成签到,获得积分10
3秒前
科研通AI5应助谢朝邦采纳,获得10
4秒前
如意完成签到,获得积分10
4秒前
CipherSage应助GOODYUE采纳,获得10
4秒前
4秒前
5秒前
cjq完成签到,获得积分10
5秒前
5秒前
小马甲应助123采纳,获得10
6秒前
Long完成签到,获得积分10
6秒前
7秒前
晚生四时完成签到,获得积分10
7秒前
7秒前
7秒前
长情洙发布了新的文献求助10
7秒前
天真的宝马完成签到,获得积分10
7秒前
8秒前
肉松小贝完成签到,获得积分10
8秒前
9秒前
9秒前
HEIKU应助yangyangyang采纳,获得10
9秒前
Esfuerzo完成签到,获得积分10
9秒前
科研通AI5应助安静的安寒采纳,获得10
10秒前
吃鸡蛋不吃鸡蛋黄完成签到,获得积分10
10秒前
royan2完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759