亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Collaborative Deep Learning for Recommender Systems

协同过滤 推荐系统 计算机科学 代表(政治) 人工智能 深度学习 机器学习 特征学习 矩阵分解 稀疏矩阵 情报检索 数据挖掘 量子力学 政治 物理 特征向量 高斯分布 法学 政治学
作者
Hao Wang,Naiyan Wang,Dit‐Yan Yeung
标识
DOI:10.1145/2783258.2783273
摘要

Collaborative filtering (CF) is a successful approach commonly used by many recommender systems. Conventional CF-based methods use the ratings given to items by users as the sole source of information for learning to make recommendation. However, the ratings are often very sparse in many applications, causing CF-based methods to degrade significantly in their recommendation performance. To address this sparsity problem, auxiliary information such as item content information may be utilized. Collaborative topic regression (CTR) is an appealing recent method taking this approach which tightly couples the two components that learn from two different sources of information. Nevertheless, the latent representation learned by CTR may not be very effective when the auxiliary information is very sparse. To address this problem, we generalize recently advances in deep learning from i.i.d. input to non-i.i.d. (CF-based) input and propose in this paper a hierarchical Bayesian model called collaborative deep learning (CDL), which jointly performs deep representation learning for the content information and collaborative filtering for the ratings (feedback) matrix. Extensive experiments on three real-world datasets from different domains show that CDL can significantly advance the state of the art.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
4秒前
10秒前
14秒前
Marciu33发布了新的文献求助10
16秒前
美女博士完成签到 ,获得积分10
18秒前
29秒前
ceeray23发布了新的文献求助20
32秒前
不在意完成签到 ,获得积分10
34秒前
cuicui发布了新的文献求助10
35秒前
lsl完成签到 ,获得积分10
37秒前
龙妍琳完成签到,获得积分10
37秒前
美女博士发布了新的文献求助10
38秒前
地理牛马完成签到 ,获得积分10
50秒前
慧灰huihui完成签到,获得积分10
54秒前
酷波er应助慧灰huihui采纳,获得10
57秒前
可耐的远侵完成签到 ,获得积分20
1分钟前
obedVL完成签到,获得积分10
1分钟前
cuicui完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
一只鲨呱发布了新的文献求助10
1分钟前
追寻依波完成签到,获得积分10
1分钟前
1分钟前
yishujia发布了新的文献求助30
1分钟前
活力广缘发布了新的文献求助20
1分钟前
Y123发布了新的文献求助10
1分钟前
xaopng完成签到,获得积分10
1分钟前
爆米花应助shier采纳,获得10
1分钟前
活力广缘完成签到,获得积分10
1分钟前
左传琦完成签到 ,获得积分10
2分钟前
NOTHING完成签到 ,获得积分10
2分钟前
2分钟前
吞吞完成签到 ,获得积分10
2分钟前
慧灰huihui发布了新的文献求助10
2分钟前
2分钟前
ceeray23发布了新的文献求助20
2分钟前
英俊的铭应助慧灰huihui采纳,获得10
2分钟前
Jy完成签到 ,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5634800
求助须知:如何正确求助?哪些是违规求助? 4733832
关于积分的说明 14989260
捐赠科研通 4792487
什么是DOI,文献DOI怎么找? 2559621
邀请新用户注册赠送积分活动 1519959
关于科研通互助平台的介绍 1480023