亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Collaborative Deep Learning for Recommender Systems

协同过滤 推荐系统 计算机科学 代表(政治) 人工智能 深度学习 机器学习 特征学习 矩阵分解 稀疏矩阵 情报检索 数据挖掘 量子力学 政治 物理 特征向量 高斯分布 法学 政治学
作者
Hao Wang,Naiyan Wang,Dit‐Yan Yeung
标识
DOI:10.1145/2783258.2783273
摘要

Collaborative filtering (CF) is a successful approach commonly used by many recommender systems. Conventional CF-based methods use the ratings given to items by users as the sole source of information for learning to make recommendation. However, the ratings are often very sparse in many applications, causing CF-based methods to degrade significantly in their recommendation performance. To address this sparsity problem, auxiliary information such as item content information may be utilized. Collaborative topic regression (CTR) is an appealing recent method taking this approach which tightly couples the two components that learn from two different sources of information. Nevertheless, the latent representation learned by CTR may not be very effective when the auxiliary information is very sparse. To address this problem, we generalize recently advances in deep learning from i.i.d. input to non-i.i.d. (CF-based) input and propose in this paper a hierarchical Bayesian model called collaborative deep learning (CDL), which jointly performs deep representation learning for the content information and collaborative filtering for the ratings (feedback) matrix. Extensive experiments on three real-world datasets from different domains show that CDL can significantly advance the state of the art.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
连安阳完成签到,获得积分10
5秒前
8秒前
lpy完成签到,获得积分10
10秒前
JamesPei应助on采纳,获得10
10秒前
顾矜应助徐0202采纳,获得10
10秒前
懒癌晚期发布了新的文献求助10
13秒前
andrele发布了新的文献求助10
20秒前
23秒前
31秒前
Jason完成签到 ,获得积分20
33秒前
35秒前
36秒前
lpy发布了新的文献求助10
36秒前
36秒前
37秒前
NexusExplorer应助水水水采纳,获得10
38秒前
欢喜的迎丝完成签到 ,获得积分10
39秒前
Wuyx发布了新的文献求助10
43秒前
45秒前
大模型应助www采纳,获得10
45秒前
科研通AI2S应助科研通管家采纳,获得10
47秒前
Downey应助科研通管家采纳,获得10
48秒前
科研通AI2S应助科研通管家采纳,获得10
48秒前
48秒前
49秒前
大方大船发布了新的文献求助10
52秒前
on发布了新的文献求助10
53秒前
水水水发布了新的文献求助10
54秒前
丘比特应助Wuyx采纳,获得10
1分钟前
机灵哈密瓜完成签到,获得积分10
1分钟前
大方大船完成签到,获得积分10
1分钟前
Charlie完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
cjy200126完成签到,获得积分10
1分钟前
zzZ_发布了新的文献求助10
1分钟前
徐0202发布了新的文献求助10
1分钟前
1分钟前
崔龙锋完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590329
求助须知:如何正确求助?哪些是违规求助? 4674705
关于积分的说明 14795072
捐赠科研通 4631262
什么是DOI,文献DOI怎么找? 2532677
邀请新用户注册赠送积分活动 1501268
关于科研通互助平台的介绍 1468617