持续时间
鞍点
统计物理学
高斯分布
持久性(不连续性)
数学
维数(图论)
伊辛模型
空格(标点符号)
度量(数据仓库)
马鞍
简单(哲学)
物理
数学优化
计算机科学
组合数学
量子力学
几何学
工程类
哲学
分子
岩土工程
操作系统
认识论
数据库
作者
Matthias Otto,J. Eckert,Thomas A. Vilgis
标识
DOI:10.1002/mats.1994.040030302
摘要
Abstract Several models and methods for stiff polymer chains are discussed. The basic idea is to develop approximate solutions to the problem of the presistence length of stiff polymers. It turns out that the persistence length can be regarded as a measure for the quality of approximations. Mean‐field methods for field theoretical calculations of the persistence length show similarities of 1/ d expansions in statistical physics ( d being the space dimension) and saddle point approximations become reliable in various limits. Gaussian approximations become — as well known for the Ising model — simple extensions of random walks as trivial renormalisations of the Wiener‐Edwards model for bosonic strings.
科研通智能强力驱动
Strongly Powered by AbleSci AI