Molecular docking sites designed for the generation of highly crystalline covalent organic frameworks

化学 堆积 共价键 结晶度 纳米技术 共价有机骨架 多孔性 有机化学 结晶学 材料科学
作者
Laura Ascherl,Torben Sick,Johannes T. Margraf,Saul H. Lapidus,Mona Calik,Christina Hettstedt,Konstantin Karaghiosoff,Markus Döblinger,Timothy Clark,Karena W. Chapman,Florian Auras,Thomas Bein
出处
期刊:Nature Chemistry [Springer Nature]
卷期号:8 (4): 310-316 被引量:458
标识
DOI:10.1038/nchem.2444
摘要

Covalent organic frameworks (COFs) formed by connecting multidentate organic building blocks through covalent bonds provide a platform for designing multifunctional porous materials with atomic precision. As they are promising materials for applications in optoelectronics, they would benefit from a maximum degree of long-range order within the framework, which has remained a major challenge. We have developed a synthetic concept to allow consecutive COF sheets to lock in position during crystal growth, and thus minimize the occurrence of stacking faults and dislocations. Hereby, the three-dimensional conformation of propeller-shaped molecular building units was used to generate well-defined periodic docking sites, which guided the attachment of successive building blocks that, in turn, promoted long-range order during COF formation. This approach enables us to achieve a very high crystallinity for a series of COFs that comprise tri- and tetradentate central building blocks. We expect this strategy to be transferable to a broad range of customized COFs. Covalent organic frameworks (COFs) are attractive multifunctional porous materials that can be generated with atomic precision. However, endowing them with long-range order—desirable for applications—has remained challenging. Now, propeller-shaped building units have been used that allow consecutive layers to lock in position, resulting in highly crystalline COFs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Chris完成签到,获得积分10
刚刚
格格发布了新的文献求助10
刚刚
刚刚
JinCao完成签到,获得积分10
刚刚
希望天下0贩的0应助昨天采纳,获得10
1秒前
背后莫言应助Des采纳,获得10
1秒前
hhhhhhh完成签到 ,获得积分10
1秒前
1秒前
2秒前
娜罗的名单完成签到,获得积分10
3秒前
lqq完成签到 ,获得积分10
3秒前
5秒前
wowser发布了新的文献求助10
5秒前
ww完成签到 ,获得积分10
6秒前
Orange应助李凤凤采纳,获得10
7秒前
qun发布了新的文献求助10
7秒前
晴心完成签到,获得积分10
7秒前
大方的花瓣完成签到,获得积分10
8秒前
Dsunflower完成签到 ,获得积分10
9秒前
9秒前
11秒前
生动向日葵完成签到,获得积分10
12秒前
星辰大海应助玄叶采纳,获得10
13秒前
wwwww完成签到 ,获得积分10
14秒前
14秒前
15秒前
wowser完成签到,获得积分10
15秒前
小巴德完成签到,获得积分10
16秒前
16秒前
Orange应助李姐采纳,获得10
17秒前
17秒前
20秒前
qy应助小胡采纳,获得20
21秒前
21秒前
AKK666完成签到,获得积分10
22秒前
23秒前
23秒前
SYT完成签到,获得积分10
23秒前
24秒前
周浩宇发布了新的文献求助10
24秒前
高分求助中
Sustainability in ’Tides Chemistry 2000
Sustainability in ’Tides Chemistry 1500
Studien zur Ideengeschichte der Gesetzgebung 1000
The ACS Guide to Scholarly Communication 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Handbook of the Mammals of the World – Volume 3: Primates 805
Ethnicities: Media, Health, and Coping 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3071772
求助须知:如何正确求助?哪些是违规求助? 2725690
关于积分的说明 7490802
捐赠科研通 2373068
什么是DOI,文献DOI怎么找? 1258410
科研通“疑难数据库(出版商)”最低求助积分说明 610277
版权声明 596938