Synthesis of self-modified black BaTiO3−x nanoparticles and effect of oxygen vacancy for the expansion of piezocatalytic application

材料科学 钛酸钡 纳米颗粒 压电 化学工程 超声波传感器 纳米技术 原材料 炭黑 析氧 电化学 复合材料 陶瓷 电极 物理化学 有机化学 工程类 天然橡胶 化学 物理 声学
作者
Myeongjun Ji,Jeong Hyun Kim,Cheol‐Hui Ryu,Young In Lee
出处
期刊:Nano Energy [Elsevier]
卷期号:95: 106993-106993 被引量:50
标识
DOI:10.1016/j.nanoen.2022.106993
摘要

Piezocatalysis is considered as a promising green and sustainable technology because of its ability to promote passive conversion of natural mechanical energy into electrochemical energy. Barium titanate (BaTiO3) nanoparticles have been actively studied as a piezocatalyst because of their non-toxicity, physicochemical stability, and high piezoelectric potential. However, their low carrier concentration is a significant drawback that limits their applicability as piezocatalysts only in ultrasonic systems, which can thermally excite BaTiO3 via cavitation. The defect engineering is a useful technique to modulate the electrical property of materials via a simple process involving the introduction of atomic defects. However, only a few reports on the synthesis of black BaTiO3−x are available, and investigations on the piezocatalytic performance of black BaTiO3−x nanoparticles have not yet been reported. In this study, the self-modified black BaTiO3−x nanoparticles were successfully synthesized through a simple solid-state reaction using defective raw materials in the reducing atmosphere. The effect of oxygen vacancies in the raw materials on the synthesis mechanism, size, and defect concentration of the final products was effectively demonstrated. Furthermore, the efficiency of defect engineering in improving the piezocatalytic performance in terms of free carrier concentration was systematically studied and subsequently proved. This paper reports a pioneering strategy that can promote the widespread practical applications of black BaTiO3−x as a piezocatalyst.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xxm完成签到,获得积分20
1秒前
1秒前
尹尹尹发布了新的文献求助10
1秒前
1秒前
小鱼发布了新的文献求助10
1秒前
丘比特应助云澈采纳,获得10
1秒前
深情安青应助开朗的戎采纳,获得10
2秒前
老肖应助啦啦啦采纳,获得10
4秒前
4秒前
5秒前
钱来完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
英俊的铭应助张文采纳,获得10
7秒前
yujie发布了新的文献求助10
9秒前
Kimi发布了新的文献求助10
9秒前
李爱国应助尹尹尹采纳,获得10
10秒前
田様应助Niuma采纳,获得20
13秒前
小马甲应助轩辕唯雪采纳,获得30
15秒前
16秒前
17秒前
大模型应助傲娇的觅翠采纳,获得10
17秒前
17秒前
17秒前
NexusExplorer应助tt采纳,获得10
18秒前
LayeredSly完成签到,获得积分10
20秒前
老肖应助欢呼的傲旋采纳,获得10
21秒前
21秒前
bird0912发布了新的文献求助10
21秒前
23秒前
张文发布了新的文献求助10
23秒前
24秒前
万能图书馆应助yujie采纳,获得10
24秒前
26秒前
小鬼丶发布了新的文献求助10
26秒前
Jiayee发布了新的文献求助20
27秒前
27秒前
28秒前
陈住气发布了新的文献求助10
29秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136629
求助须知:如何正确求助?哪些是违规求助? 2787705
关于积分的说明 7782850
捐赠科研通 2443769
什么是DOI,文献DOI怎么找? 1299401
科研通“疑难数据库(出版商)”最低求助积分说明 625440
版权声明 600954