Independent gradient model based on Hirshfeld partition: A new method for visual study of interactions in chemical systems

分子内力 分拆(数论) 分子间力 计算机科学 波函数 化学 分子 理论计算机科学 统计物理学 物理 数学 量子力学 组合数学
作者
Tian Lu,Qinxue Chen
出处
期刊:Journal of Computational Chemistry [Wiley]
卷期号:43 (8): 539-555 被引量:1360
标识
DOI:10.1002/jcc.26812
摘要

The powerful independent gradient model (IGM) method has been increasingly popular in visual analysis of intramolecular and intermolecular interactions in recent years. However, we frequently observed that there is an evident shortcoming of IGM map in graphically studying weak interactions, that is its isosurfaces are usually too bulgy; in these cases, not only the graphical effect is poor, but also the color on some areas on the isosurfaces is inappropriate and may lead to erroneous analysis conclusions. In addition, the IGM method was originally proposed based on promolecular density, which is quite crude and does not take actual electronic structure into account. In this article, we propose an improvement version of IGM, namely IGM based on Hirshfeld partition of molecular density (IGMH), which replaces the free-state atomic densities involved in the IGM method with the atomic densities derived by Hirshfeld partition of actual molecular electron density. This change makes IGM have more rigorous physical background. A large number of application examples in this article, including molecular and periodic systems, weak and chemical bond interactions, fully demonstrate the important value of IGMH in intuitively understanding interactions in chemical systems. Comparisons also showed that the IGMH usually has markedly better graphical effect than IGM and overcomes known problems in IGM. Currently IGMH analysis has been supported in our wavefunction analysis code Multiwfn (http://sobereva.com/multiwfn). We hope that IGMH will become a new useful method among chemists for exploring interactions in wide variety of chemical systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助德德采纳,获得10
刚刚
1秒前
kkk完成签到,获得积分10
1秒前
leozhe发布了新的文献求助10
1秒前
喜悦的香之完成签到 ,获得积分10
3秒前
巫马炎彬完成签到,获得积分0
3秒前
辛勤的飞烟完成签到,获得积分10
3秒前
4秒前
打打应助十三采纳,获得10
5秒前
Jingshuiliushen完成签到,获得积分10
5秒前
zhaolei0519完成签到,获得积分10
5秒前
可爱的万万亿完成签到,获得积分10
6秒前
安安完成签到,获得积分10
6秒前
动人的秋发布了新的文献求助10
6秒前
chengzi完成签到,获得积分10
6秒前
可爱的函函应助kkk采纳,获得10
6秒前
6秒前
CodeCraft应助TT采纳,获得10
6秒前
香菜大姐完成签到,获得积分10
6秒前
ACTION完成签到,获得积分10
7秒前
天真的万声完成签到,获得积分10
8秒前
慕青应助1111采纳,获得10
8秒前
木木完成签到 ,获得积分10
8秒前
感恩的心完成签到,获得积分10
8秒前
9秒前
勤奋花瓣发布了新的文献求助10
9秒前
zzzyyyuuu完成签到 ,获得积分10
10秒前
10秒前
还行一般完成签到,获得积分20
10秒前
南望完成签到 ,获得积分10
11秒前
11秒前
12秒前
德德发布了新的文献求助10
12秒前
bluesky完成签到,获得积分10
12秒前
王大帅哥完成签到,获得积分10
12秒前
小熊猫完成签到,获得积分10
12秒前
CipherSage应助滚去学习采纳,获得10
13秒前
13秒前
13秒前
奋斗的珍完成签到,获得积分10
14秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155325
求助须知:如何正确求助?哪些是违规求助? 2806223
关于积分的说明 7868751
捐赠科研通 2464681
什么是DOI,文献DOI怎么找? 1311903
科研通“疑难数据库(出版商)”最低求助积分说明 629783
版权声明 601880