清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

An interpretable deep learning algorithm for dynamic early warning of posttraumatic hemorrhagic shock based on noninvasive parameter

可解释性 预警系统 入射(几何) 休克(循环) 失血性休克 卷积神经网络 深度学习 计算机科学 试验装置 算法 医学 人工智能 数据集 集合(抽象数据类型) 数据库 机器学习 内科学 电信 物理 光学 程序设计语言
作者
Guang Zhang,Jiameng Xu,Huiquan Wang,Ming Yu,Jing Yuan
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:77: 103779-103779 被引量:2
标识
DOI:10.1016/j.bspc.2022.103779
摘要

Hemorrhage and hemorrhagic shock are common causes of death after an acute trauma. The mortality from hemorrhagic shock can be significantly reduced through the prophylactic administration of red blood cells or the use of 100% mechanical ventilation. In this study, a dynamic early warning system based on non-invasive parameters was developed in this study and was evaluated using deep learning algorithms, aiming to predict the incidence of hemorrhagic shock in patients over the next 4–8 h. An observational cohort study. The data set was collected from three data sets from 210 different hospitals in the United States and the Netherlands. One of them was publicly available for model development and two were used for testing. 9659 patients from eICU database, 2942 patients from MIMICIII database, 1055 patients from AmsterdamUMC database. None. A deep learning model, constructed using Convolutional Neural Networks (CNN), Bi-directional Long-Short Term Memory (BiLSTM), and Attention Mechanism, was employed to dynamically predict the incidence of hemorrhagic shock in patients over the next 4–8 h based on 4 h patient data. A dynamic early warning model was trained with non-invasive data from the eICU database. The test set, composed of the data of the MIMICIII and AmsterdamUMC databases, was utilized for cross-database validation of model performance, and the AUC value reached 0.8104. When the model parameters were updated with 5% of data, the AUC value increased to 0.8591 in the test set composed of other data. The results from the interpretability analysis showed that gender was crucial for judging whether hemorrhagic shock would occur in patients following trauma. The deep learning model was used to validate the feasibility of constructing a dynamic early warning model for post-traumatic hemorrhagic shock based on non-invasive parameters. The interpretability analysis results were consistent with clinical study results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lee完成签到 ,获得积分10
14秒前
creep2020完成签到,获得积分10
18秒前
大模型应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
Lucas应助科研通管家采纳,获得10
20秒前
LY完成签到,获得积分10
39秒前
48秒前
研友_VZG7GZ应助Suchen136采纳,获得10
49秒前
小强完成签到 ,获得积分10
51秒前
略略略完成签到,获得积分10
54秒前
56秒前
Suchen136发布了新的文献求助10
1分钟前
略略略发布了新的文献求助30
1分钟前
1分钟前
娟娟加油完成签到 ,获得积分10
1分钟前
1分钟前
名侦探柯基完成签到 ,获得积分10
1分钟前
koritto完成签到,获得积分10
1分钟前
huangzsdy完成签到,获得积分10
1分钟前
zhangguo完成签到 ,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得30
2分钟前
可靠的书桃完成签到 ,获得积分10
2分钟前
zarahn完成签到,获得积分10
3分钟前
无悔完成签到 ,获得积分10
3分钟前
3分钟前
流年发布了新的文献求助10
3分钟前
GankhuyagJavzan完成签到,获得积分10
3分钟前
小西完成签到 ,获得积分10
4分钟前
4分钟前
神勇的天问完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
天天快乐应助细心的语蓉采纳,获得10
4分钟前
龙猫爱看书完成签到,获得积分10
4分钟前
5分钟前
西安浴日光能赵炜完成签到,获得积分10
5分钟前
5分钟前
5分钟前
rtx00发布了新的文献求助10
5分钟前
清净163发布了新的文献求助10
5分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1050
Les Mantodea de Guyane Insecta, Polyneoptera 1000
England and the Discovery of America, 1481-1620 600
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
2024-2030年中国聚异戊二烯橡胶行业市场现状调查及发展前景研判报告 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3590771
求助须知:如何正确求助?哪些是违规求助? 3159159
关于积分的说明 9522028
捐赠科研通 2862100
什么是DOI,文献DOI怎么找? 1572929
邀请新用户注册赠送积分活动 738282
科研通“疑难数据库(出版商)”最低求助积分说明 722769