An interpretable deep learning algorithm for dynamic early warning of posttraumatic hemorrhagic shock based on noninvasive parameter

可解释性 预警系统 入射(几何) 休克(循环) 失血性休克 卷积神经网络 深度学习 计算机科学 试验装置 算法 医学 人工智能 数据集 集合(抽象数据类型) 数据库 机器学习 内科学 电信 物理 光学 程序设计语言
作者
Guang Zhang,Jiameng Xu,Huiquan Wang,Ming Yu,Jing Yuan
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:77: 103779-103779 被引量:2
标识
DOI:10.1016/j.bspc.2022.103779
摘要

Hemorrhage and hemorrhagic shock are common causes of death after an acute trauma. The mortality from hemorrhagic shock can be significantly reduced through the prophylactic administration of red blood cells or the use of 100% mechanical ventilation. In this study, a dynamic early warning system based on non-invasive parameters was developed in this study and was evaluated using deep learning algorithms, aiming to predict the incidence of hemorrhagic shock in patients over the next 4–8 h. An observational cohort study. The data set was collected from three data sets from 210 different hospitals in the United States and the Netherlands. One of them was publicly available for model development and two were used for testing. 9659 patients from eICU database, 2942 patients from MIMICIII database, 1055 patients from AmsterdamUMC database. None. A deep learning model, constructed using Convolutional Neural Networks (CNN), Bi-directional Long-Short Term Memory (BiLSTM), and Attention Mechanism, was employed to dynamically predict the incidence of hemorrhagic shock in patients over the next 4–8 h based on 4 h patient data. A dynamic early warning model was trained with non-invasive data from the eICU database. The test set, composed of the data of the MIMICIII and AmsterdamUMC databases, was utilized for cross-database validation of model performance, and the AUC value reached 0.8104. When the model parameters were updated with 5% of data, the AUC value increased to 0.8591 in the test set composed of other data. The results from the interpretability analysis showed that gender was crucial for judging whether hemorrhagic shock would occur in patients following trauma. The deep learning model was used to validate the feasibility of constructing a dynamic early warning model for post-traumatic hemorrhagic shock based on non-invasive parameters. The interpretability analysis results were consistent with clinical study results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
梦想里发布了新的文献求助20
1秒前
1秒前
SciGPT应助zqxx采纳,获得10
1秒前
2秒前
CodeCraft应助zcvxd采纳,获得10
2秒前
丘比特应助sdl采纳,获得10
3秒前
英姑应助烩面大师采纳,获得10
3秒前
tinghai86完成签到,获得积分10
3秒前
CreaJOE完成签到,获得积分20
3秒前
爆米花应助meimei采纳,获得10
4秒前
4秒前
4秒前
wwwjqw完成签到,获得积分10
5秒前
研友_LjDyNZ发布了新的文献求助10
5秒前
东风发布了新的文献求助10
5秒前
6秒前
Hello应助Lea采纳,获得30
6秒前
共享精神应助斯文夏柳采纳,获得10
6秒前
7秒前
7秒前
萝卜干发布了新的文献求助10
7秒前
7秒前
哈哈哈哈发布了新的文献求助10
8秒前
从容甜瓜发布了新的文献求助10
8秒前
8秒前
张金鹏发布了新的文献求助10
10秒前
温暖的冷风完成签到,获得积分10
11秒前
坦率ling发布了新的文献求助10
11秒前
ZHANES发布了新的文献求助10
11秒前
wonderingria完成签到,获得积分20
11秒前
珠珠发布了新的文献求助10
12秒前
12秒前
黄建雨完成签到,获得积分10
12秒前
英俊的铭应助从容寄凡采纳,获得10
13秒前
lll完成签到,获得积分10
13秒前
贺贺发布了新的文献求助10
13秒前
13秒前
14秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978415
求助须知:如何正确求助?哪些是违规求助? 3522416
关于积分的说明 11213317
捐赠科研通 3259798
什么是DOI,文献DOI怎么找? 1799678
邀请新用户注册赠送积分活动 878563
科研通“疑难数据库(出版商)”最低求助积分说明 806987