已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An interpretable deep learning algorithm for dynamic early warning of posttraumatic hemorrhagic shock based on noninvasive parameter

可解释性 预警系统 入射(几何) 休克(循环) 失血性休克 卷积神经网络 深度学习 计算机科学 试验装置 算法 医学 人工智能 数据集 集合(抽象数据类型) 数据库 机器学习 内科学 电信 物理 光学 程序设计语言
作者
Guang Zhang,Jiameng Xu,Huiquan Wang,Ming Yu,Jing Yuan
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:77: 103779-103779 被引量:2
标识
DOI:10.1016/j.bspc.2022.103779
摘要

Hemorrhage and hemorrhagic shock are common causes of death after an acute trauma. The mortality from hemorrhagic shock can be significantly reduced through the prophylactic administration of red blood cells or the use of 100% mechanical ventilation. In this study, a dynamic early warning system based on non-invasive parameters was developed in this study and was evaluated using deep learning algorithms, aiming to predict the incidence of hemorrhagic shock in patients over the next 4–8 h. An observational cohort study. The data set was collected from three data sets from 210 different hospitals in the United States and the Netherlands. One of them was publicly available for model development and two were used for testing. 9659 patients from eICU database, 2942 patients from MIMICIII database, 1055 patients from AmsterdamUMC database. None. A deep learning model, constructed using Convolutional Neural Networks (CNN), Bi-directional Long-Short Term Memory (BiLSTM), and Attention Mechanism, was employed to dynamically predict the incidence of hemorrhagic shock in patients over the next 4–8 h based on 4 h patient data. A dynamic early warning model was trained with non-invasive data from the eICU database. The test set, composed of the data of the MIMICIII and AmsterdamUMC databases, was utilized for cross-database validation of model performance, and the AUC value reached 0.8104. When the model parameters were updated with 5% of data, the AUC value increased to 0.8591 in the test set composed of other data. The results from the interpretability analysis showed that gender was crucial for judging whether hemorrhagic shock would occur in patients following trauma. The deep learning model was used to validate the feasibility of constructing a dynamic early warning model for post-traumatic hemorrhagic shock based on non-invasive parameters. The interpretability analysis results were consistent with clinical study results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
龅牙苏发布了新的文献求助10
刚刚
动听衬衫发布了新的文献求助10
2秒前
李月完成签到 ,获得积分10
2秒前
Cheng完成签到 ,获得积分10
3秒前
科研fw完成签到 ,获得积分10
4秒前
rui520完成签到 ,获得积分10
6秒前
鱼鱼余裕完成签到 ,获得积分10
7秒前
7秒前
wit完成签到,获得积分10
9秒前
挽晨完成签到 ,获得积分10
9秒前
顾矜应助1111采纳,获得10
10秒前
12秒前
小状元完成签到 ,获得积分10
12秒前
13秒前
13秒前
15秒前
www完成签到 ,获得积分10
16秒前
16秒前
Gavin完成签到 ,获得积分10
16秒前
wit发布了新的文献求助10
16秒前
kk完成签到,获得积分10
16秒前
子阅完成签到 ,获得积分10
17秒前
花花123发布了新的文献求助10
18秒前
何晋发布了新的文献求助10
19秒前
RR发布了新的文献求助10
20秒前
小蘑菇应助阿狸贱贱采纳,获得10
21秒前
Doc完成签到,获得积分10
21秒前
Landau发布了新的文献求助10
21秒前
搜集达人应助彪壮的元柏采纳,获得10
22秒前
Jasper应助花花123采纳,获得10
23秒前
星月完成签到 ,获得积分10
24秒前
耍酷的觅荷完成签到 ,获得积分10
25秒前
乐乐应助敲敲采纳,获得10
25秒前
长安完成签到 ,获得积分10
26秒前
顾矜应助zz采纳,获得10
26秒前
26秒前
万能图书馆应助Landau采纳,获得10
26秒前
31秒前
31秒前
幸运幸福发布了新的文献求助10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252991
求助须知:如何正确求助?哪些是违规求助? 4416534
关于积分的说明 13750009
捐赠科研通 4288755
什么是DOI,文献DOI怎么找? 2353041
邀请新用户注册赠送积分活动 1349815
关于科研通互助平台的介绍 1309493