An interpretable deep learning algorithm for dynamic early warning of posttraumatic hemorrhagic shock based on noninvasive parameter

可解释性 预警系统 入射(几何) 休克(循环) 失血性休克 卷积神经网络 深度学习 计算机科学 试验装置 算法 医学 人工智能 数据集 集合(抽象数据类型) 数据库 机器学习 内科学 电信 物理 光学 程序设计语言
作者
Guang Zhang,Jiameng Xu,Huiquan Wang,Ming Yu,Jing Yuan
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:77: 103779-103779 被引量:2
标识
DOI:10.1016/j.bspc.2022.103779
摘要

Hemorrhage and hemorrhagic shock are common causes of death after an acute trauma. The mortality from hemorrhagic shock can be significantly reduced through the prophylactic administration of red blood cells or the use of 100% mechanical ventilation. In this study, a dynamic early warning system based on non-invasive parameters was developed in this study and was evaluated using deep learning algorithms, aiming to predict the incidence of hemorrhagic shock in patients over the next 4–8 h. An observational cohort study. The data set was collected from three data sets from 210 different hospitals in the United States and the Netherlands. One of them was publicly available for model development and two were used for testing. 9659 patients from eICU database, 2942 patients from MIMICIII database, 1055 patients from AmsterdamUMC database. None. A deep learning model, constructed using Convolutional Neural Networks (CNN), Bi-directional Long-Short Term Memory (BiLSTM), and Attention Mechanism, was employed to dynamically predict the incidence of hemorrhagic shock in patients over the next 4–8 h based on 4 h patient data. A dynamic early warning model was trained with non-invasive data from the eICU database. The test set, composed of the data of the MIMICIII and AmsterdamUMC databases, was utilized for cross-database validation of model performance, and the AUC value reached 0.8104. When the model parameters were updated with 5% of data, the AUC value increased to 0.8591 in the test set composed of other data. The results from the interpretability analysis showed that gender was crucial for judging whether hemorrhagic shock would occur in patients following trauma. The deep learning model was used to validate the feasibility of constructing a dynamic early warning model for post-traumatic hemorrhagic shock based on non-invasive parameters. The interpretability analysis results were consistent with clinical study results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lina完成签到 ,获得积分10
1秒前
2秒前
cc66发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
3秒前
虚拟的皮卡丘完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
7秒前
bow完成签到 ,获得积分10
7秒前
11秒前
优雅的WAN完成签到 ,获得积分10
12秒前
所所应助cc66采纳,获得10
12秒前
LQ完成签到,获得积分10
13秒前
hui完成签到,获得积分10
13秒前
无心的天真完成签到 ,获得积分10
14秒前
君莫笑完成签到,获得积分10
14秒前
热心不凡完成签到,获得积分10
17秒前
乌特拉完成签到 ,获得积分10
17秒前
晚风完成签到,获得积分10
17秒前
元夕完成签到,获得积分10
17秒前
飘逸蘑菇完成签到 ,获得积分10
19秒前
风中的棒棒糖完成签到 ,获得积分10
22秒前
无私的听荷完成签到,获得积分10
22秒前
飘萍过客完成签到,获得积分10
23秒前
23秒前
24秒前
24秒前
皛鱼完成签到,获得积分10
26秒前
大脸猫完成签到 ,获得积分10
26秒前
量子星尘发布了新的文献求助10
28秒前
小林神发布了新的文献求助10
28秒前
adamchris完成签到,获得积分10
28秒前
strama完成签到,获得积分10
29秒前
梓唯忧完成签到 ,获得积分10
30秒前
30秒前
pan完成签到,获得积分10
30秒前
科研通AI6.1应助michael采纳,获得30
32秒前
Cooper应助昏睡的听云采纳,获得10
32秒前
Yuan完成签到,获得积分10
33秒前
碧蓝百合发布了新的文献求助10
35秒前
小林神完成签到,获得积分10
35秒前
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5789548
求助须知:如何正确求助?哪些是违规求助? 5721282
关于积分的说明 15474982
捐赠科研通 4917368
什么是DOI,文献DOI怎么找? 2646953
邀请新用户注册赠送积分活动 1594561
关于科研通互助平台的介绍 1549099