Temperature Prediction of Flat Steel Box Girders of Long-Span Bridges Utilizing In Situ Environmental Parameters and Machine Learning

随机森林 风速 桥(图论) 工程类 预测建模 经验模型 结构健康监测 时间序列 风向 人工神经网络 结构工程 滞后 机器学习 气象学 模拟 计算机科学 地理 内科学 计算机网络 医学
作者
Zhi-wei Wang,Wen-ming Zhang,Yufeng Zhang,Zhao Liu
出处
期刊:Journal of Bridge Engineering [American Society of Civil Engineers]
卷期号:27 (3) 被引量:25
标识
DOI:10.1061/(asce)be.1943-5592.0001840
摘要

Design, construction, and maintenance of large-span bridges require an accurate assessment of the temperature field in flat steel box girders (FSBGs). While this field is controlled by various environmental (meteorological) factors, including temperature, solar radiation, humidity, wind speed, and wind direction, there is no comprehensive model for its prediction based on multiple environmental variables. Given this, two novel methods for calculating the cross-sectional effective temperature (ET) of the FSBG were proposed in this study. Based on the bridge’s environmental variables measured on-site, regression models for predicting ET and vertical temperature difference (VTD) in FSBG were introduced, including a random forest (RF) model and empirical formulas. The RF model’s hyperparameters were derived by the Bayesian optimization algorithm. The proposed approach was applied to the case study of the Sutong Bridge, China, using 2 years’ data samples collected via the bridge health monitoring system and Copernicus Climate Change Service. The model’s training and testing results proved that the predictive performance of the multifactor random forest model significantly exceeded that of the single-factor linear model by about 60%. The RF model’s accuracy in the ET/VTD prediction also outperformed the support vector regression model and back-propagation neural network model. Besides, the correlation analysis of environmental variables revealed a significant time-lag between ET/VTD and the surface solar radiation intensity (about 3 h). The predictive performance of the RF model considering the time-lag effect was further improved (by about 20%–30%).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
胡桃夹子发布了新的文献求助30
刚刚
脑洞疼应助万海采纳,获得10
刚刚
阡陌完成签到,获得积分10
刚刚
xiaohao发布了新的文献求助10
1秒前
烈日骄阳发布了新的文献求助10
2秒前
2秒前
4秒前
李梓权完成签到,获得积分20
5秒前
5秒前
脑洞疼应助张zhang采纳,获得10
6秒前
傅荣轩完成签到,获得积分10
6秒前
有何丿不可应助MCS采纳,获得20
6秒前
Quin完成签到,获得积分10
7秒前
8秒前
李梓权发布了新的文献求助10
8秒前
张凤发布了新的文献求助10
9秒前
zho应助张老师采纳,获得10
9秒前
9秒前
烈日骄阳完成签到,获得积分10
10秒前
11秒前
和谐的寄凡完成签到,获得积分10
12秒前
共享精神应助神勇善斓采纳,获得10
13秒前
iKUN老司机完成签到,获得积分10
13秒前
a9902002完成签到,获得积分10
13秒前
YY发布了新的文献求助10
13秒前
小孙孙发布了新的文献求助10
14秒前
CipherSage应助neko采纳,获得10
14秒前
15秒前
冷笑完成签到,获得积分10
15秒前
15秒前
可靠的钻石完成签到,获得积分10
15秒前
吴雨发布了新的文献求助10
16秒前
16秒前
Hades完成签到 ,获得积分10
16秒前
科研通AI5应助EYRE采纳,获得10
16秒前
wanci应助张zhang采纳,获得10
17秒前
张家木完成签到,获得积分10
18秒前
MCS完成签到,获得积分10
18秒前
19秒前
爱学习完成签到,获得积分10
20秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
ALUMINUM STANDARDS AND DATA 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3668063
求助须知:如何正确求助?哪些是违规求助? 3226515
关于积分的说明 9769764
捐赠科研通 2936459
什么是DOI,文献DOI怎么找? 1608572
邀请新用户注册赠送积分活动 759665
科研通“疑难数据库(出版商)”最低求助积分说明 735460