质子
膜
电导率
材料科学
质子交换膜燃料电池
磺酸
化学
化学工程
核化学
高分子化学
物理化学
物理
工程类
生物化学
量子力学
作者
Ping Li,Hui Guo,Yanan Lv,Lei Zhang,Peng Sun,Guohong Liu
出处
期刊:ACS applied energy materials
[American Chemical Society]
日期:2022-03-31
卷期号:5 (4): 4956-4969
被引量:22
标识
DOI:10.1021/acsaem.2c00333
摘要
Improving the comprehensive properties of the high-temperature proton exchange membrane (HTPEM) under wide relative humidity (RH) is a crucial factor affecting the application. For this, a zirconium 4,4-[aminopropyl sulfonate (methyl phosphate)] diphenylamine sulfonic acid (Zr-PPSA), containing −SO3H suitable for proton transfer at high RH and -PO3H2 for conduction at low RH is prepared. The highly functionalized tri-glycidyl isocyanurate (TGIC) as a cross-linker of poly-m-polybenzimidazole (mPBI) is beneficial to improve the membrane-forming property, mechanical strength, and oxidative stability of the composite membranes under less addition. The mPBI–TGIC/ZrPPSA composite membranes are obtained by doping Zr-PPSA in the cross-linked mPBI–TGIC networks at a uniform and high level, which is expected to achieve efficient proton transport. The molecular dynamics simulation primarily proves the proton transfer mechanism. At 180 °C, the proton conductivity of mPBI–TGIC(5)/ZrPPSA(30) and mPBI–TGIC(10)/ZrPPSA(40) can reach 0.125 and 0.134 S/cm at 100% RH and 0.021 and 0.025 S/cm at 0% RH, respectively. After the washing test for 96 h, the decline of conductivity for mPBI–TGIC(10)/ZrPPSA(40) is 2.25%. The mPBI–TGIC(10)/ZrPPSA(40) membrane also exhibits low methanol permeability (8.33 × 10–8 cm2 s–1 at 90 °C). The mPBI–TGIC/ZrPPSA membranes with high proton conductivity, durability, and membrane selectivity are a good candidate for the application in HTPEM.
科研通智能强力驱动
Strongly Powered by AbleSci AI