Single-cell analysis of somatic mutations in human bronchial epithelial cells in relation to aging and smoking

体细胞 肺癌 生物 突变 种系突变 突变率 突变频率 遗传学 突变积累 基因 内科学 癌症研究 医学
作者
Zhenqiu Huang,Shixiang Sun,Moonsook Lee,Alexander Y. Maslov,Miao Shi,S. Waldman,A. Marsh,T. Siddiqui,Xiao Dong,Yakov Peter,Ali Sadoughi,Chirag Shah,Kenny Ye,Simon D. Spivack,Jan Vijg
出处
期刊:Nature Genetics [Springer Nature]
卷期号:54 (4): 492-498 被引量:115
标识
DOI:10.1038/s41588-022-01035-w
摘要

Although lung cancer risk among smokers is dependent on smoking dose, it remains unknown if this increased risk reflects an increased rate of somatic mutation accumulation in normal lung cells. Here, we applied single-cell whole-genome sequencing of proximal bronchial basal cells from 33 participants aged between 11 and 86 years with smoking histories varying from never-smoking to 116 pack-years. We found an increase in the frequency of single-nucleotide variants and small insertions and deletions with chronological age in never-smokers, with mutation frequencies significantly elevated among smokers. When plotted against smoking pack-years, mutations followed the linear increase in cancer risk until about 23 pack-years, after which no further increase in mutation frequency was observed, pointing toward individual selection for mutation avoidance. Known lung cancer-defined mutation signatures tracked with both age and smoking. No significant enrichment for somatic mutations in lung cancer driver genes was observed. Single-cell whole-genome sequencing of proximal bronchial basal cells shows that somatic mutations accumulate with age and at a higher level in smokers compared to never-smokers. Mutation frequencies increased with smoking dose but then plateaued, suggesting intrinsic mechanisms to limit mutation burden.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Mathilda99发布了新的文献求助10
2秒前
英姑应助Mia采纳,获得10
2秒前
英俊的铭应助理想采纳,获得10
3秒前
3秒前
江海下百川完成签到,获得积分10
3秒前
4秒前
大模型应助666888采纳,获得10
5秒前
追忆淮发布了新的文献求助10
5秒前
万能图书馆应助Lorain采纳,获得10
6秒前
李俊枫发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
Novoa应助ZZX采纳,获得10
8秒前
8秒前
小爽完成签到,获得积分0
8秒前
赘婿应助MADAO采纳,获得10
8秒前
9秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
爆米花应助科研通管家采纳,获得10
10秒前
小二郎应助科研通管家采纳,获得10
10秒前
wbshore应助科研通管家采纳,获得10
11秒前
丘比特应助科研通管家采纳,获得10
11秒前
Criminology34应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
李爱国应助科研通管家采纳,获得10
11秒前
小蘑菇应助科研通管家采纳,获得10
11秒前
li应助科研通管家采纳,获得10
11秒前
Hello应助科研通管家采纳,获得10
11秒前
FashionBoy应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
11秒前
爆米花应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
11秒前
英俊的铭应助科研通管家采纳,获得50
11秒前
老大蒂亚戈完成签到,获得积分0
12秒前
HaloX完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5708988
求助须知:如何正确求助?哪些是违规求助? 5191995
关于积分的说明 15255588
捐赠科研通 4861880
什么是DOI,文献DOI怎么找? 2609733
邀请新用户注册赠送积分活动 1560175
关于科研通互助平台的介绍 1517941