Imaging Radiomic Biomarkers of Mandibular Osteoradionecrosis for Head and Neck Cancer

医学 放射性骨坏死 相关性 人工智能 头颈部癌 支持向量机 核医学 放射科 放射治疗 模式识别(心理学) 计算机科学 数学 几何学
作者
Abdallah S.R. Mohamed,Abdelrahman Abusaif,Ahmed W Moawad,Lisanne V. van Dijk,D Fuentes,Khaled M. Elsayes,C.D. Fuller,Syeling Lai
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier BV]
卷期号:112 (5): e30-e31
标识
DOI:10.1016/j.ijrobp.2021.12.071
摘要

Purpose/Objective(s) This study aims to identify radiomic features extracted from contrast-enhanced CT scans that differentiate osteoradionecrosis (ORN) from normal mandibular bone in head and neck cancer patients treated with radiotherapy. Materials/Methods Contrast-enhanced CT images were collected for patients with confirmed ORN diagnosis at MD Anderson Cancer Center between 2008 and 2018. The ORN regions of interest (ROIs) were segmented manually in each image. The control ROIs of the contralateral health mandible were generated by a Python script then adjusted manually in each image. Commercial software was then used to extract the radiomic features from both ORN and control ROIs after the application of intrinsic filters. The pairwise correlation filter was used to remove radiomic features whose pairwise correlation was ≥0.99. Filter algorithms were then used to further reduce the number of radiomic features. After that, wrapper and embedded methods were applied on the resulting radiomic features. Finally, Gini importance and Recursive Feature Elimination (RFE) were used to select the final radiomic features for the predictive model. The support vector machine (SVM) with linear kernel was used for the binary classification of ORN and normal mandibular bone. The performance of the model was evaluated using the Area Under Curve (AUC). Results A total of 150 patients with radiologically established ORN were included in our study. The mean age was 62.3 years (range 27-82). The mean duration between the end of RT and ORN diagnosis was 32.6 months. The pairwise correlation omitted 432 features with a correlation ≥ 0.99. After that, the first step of the radiomic features engineering (using the filter algorithm) resulted in the selection of 33 radiomic features with statistically significant results in all the following three statistical methods: Pearson correlation, Chi-square test, and F-score. The RFE based on the Gini index selected 5 radiomics features. The final classifier used SVM with linear Kernel. The input for this classifier was the final set of radiomic features (N=5). We validated this binary classification model using 5-fold cross-validation. During this validation, the range of AUC was (0.84–0.95) & the average AUC was 0.90. Conclusion We successfully used imaging radiomic features to construct an accurate model (AUC= 0.90) to discriminate ORN versus normal mandibular bone in head and neck cancer patients. Future studies are needed to validate this model in prospective studies to early detect ORN in head and neck cancer patients after radiation treatment. This study aims to identify radiomic features extracted from contrast-enhanced CT scans that differentiate osteoradionecrosis (ORN) from normal mandibular bone in head and neck cancer patients treated with radiotherapy. Contrast-enhanced CT images were collected for patients with confirmed ORN diagnosis at MD Anderson Cancer Center between 2008 and 2018. The ORN regions of interest (ROIs) were segmented manually in each image. The control ROIs of the contralateral health mandible were generated by a Python script then adjusted manually in each image. Commercial software was then used to extract the radiomic features from both ORN and control ROIs after the application of intrinsic filters. The pairwise correlation filter was used to remove radiomic features whose pairwise correlation was ≥0.99. Filter algorithms were then used to further reduce the number of radiomic features. After that, wrapper and embedded methods were applied on the resulting radiomic features. Finally, Gini importance and Recursive Feature Elimination (RFE) were used to select the final radiomic features for the predictive model. The support vector machine (SVM) with linear kernel was used for the binary classification of ORN and normal mandibular bone. The performance of the model was evaluated using the Area Under Curve (AUC). A total of 150 patients with radiologically established ORN were included in our study. The mean age was 62.3 years (range 27-82). The mean duration between the end of RT and ORN diagnosis was 32.6 months. The pairwise correlation omitted 432 features with a correlation ≥ 0.99. After that, the first step of the radiomic features engineering (using the filter algorithm) resulted in the selection of 33 radiomic features with statistically significant results in all the following three statistical methods: Pearson correlation, Chi-square test, and F-score. The RFE based on the Gini index selected 5 radiomics features. The final classifier used SVM with linear Kernel. The input for this classifier was the final set of radiomic features (N=5). We validated this binary classification model using 5-fold cross-validation. During this validation, the range of AUC was (0.84–0.95) & the average AUC was 0.90. We successfully used imaging radiomic features to construct an accurate model (AUC= 0.90) to discriminate ORN versus normal mandibular bone in head and neck cancer patients. Future studies are needed to validate this model in prospective studies to early detect ORN in head and neck cancer patients after radiation treatment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
chen1999完成签到,获得积分10
刚刚
欣欣发布了新的文献求助10
刚刚
bkagyin应助体贴冰棍采纳,获得10
刚刚
1秒前
赟糖完成签到,获得积分10
1秒前
wzh19940205完成签到,获得积分10
1秒前
2秒前
chen1999发布了新的文献求助10
2秒前
木子发布了新的文献求助10
4秒前
虚心的芹发布了新的文献求助10
4秒前
bmdeisler发布了新的文献求助10
4秒前
FashionBoy应助hooka采纳,获得10
4秒前
5秒前
A.y.w发布了新的文献求助10
5秒前
liwanhong发布了新的文献求助10
6秒前
沉默完成签到,获得积分10
7秒前
科研通AI2S应助平淡惜灵采纳,获得10
7秒前
铁甲小宝完成签到,获得积分10
7秒前
果实发布了新的文献求助10
7秒前
8秒前
8秒前
lalala发布了新的文献求助10
9秒前
bmdeisler完成签到,获得积分10
9秒前
雨柏完成签到 ,获得积分10
10秒前
10秒前
11秒前
11秒前
11秒前
12秒前
12秒前
火星上的冬云完成签到,获得积分10
13秒前
by完成签到,获得积分10
13秒前
13秒前
马素娜发布了新的文献求助10
15秒前
wisliudj发布了新的文献求助10
15秒前
xiao双月发布了新的文献求助10
15秒前
15秒前
刘~发布了新的文献求助10
16秒前
16秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960936
求助须知:如何正确求助?哪些是违规求助? 3507194
关于积分的说明 11134321
捐赠科研通 3239560
什么是DOI,文献DOI怎么找? 1790248
邀请新用户注册赠送积分活动 872244
科研通“疑难数据库(出版商)”最低求助积分说明 803149