Imaging Radiomic Biomarkers of Mandibular Osteoradionecrosis for Head and Neck Cancer

医学 放射性骨坏死 相关性 人工智能 头颈部癌 支持向量机 核医学 放射科 放射治疗 模式识别(心理学) 计算机科学 数学 几何学
作者
Abdallah S.R. Mohamed,Abdelrahman Abusaif,Ahmed W Moawad,Lisanne V. van Dijk,D Fuentes,Khaled M. Elsayes,C.D. Fuller,Syeling Lai
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier]
卷期号:112 (5): e30-e31
标识
DOI:10.1016/j.ijrobp.2021.12.071
摘要

Purpose/Objective(s) This study aims to identify radiomic features extracted from contrast-enhanced CT scans that differentiate osteoradionecrosis (ORN) from normal mandibular bone in head and neck cancer patients treated with radiotherapy. Materials/Methods Contrast-enhanced CT images were collected for patients with confirmed ORN diagnosis at MD Anderson Cancer Center between 2008 and 2018. The ORN regions of interest (ROIs) were segmented manually in each image. The control ROIs of the contralateral health mandible were generated by a Python script then adjusted manually in each image. Commercial software was then used to extract the radiomic features from both ORN and control ROIs after the application of intrinsic filters. The pairwise correlation filter was used to remove radiomic features whose pairwise correlation was ≥0.99. Filter algorithms were then used to further reduce the number of radiomic features. After that, wrapper and embedded methods were applied on the resulting radiomic features. Finally, Gini importance and Recursive Feature Elimination (RFE) were used to select the final radiomic features for the predictive model. The support vector machine (SVM) with linear kernel was used for the binary classification of ORN and normal mandibular bone. The performance of the model was evaluated using the Area Under Curve (AUC). Results A total of 150 patients with radiologically established ORN were included in our study. The mean age was 62.3 years (range 27-82). The mean duration between the end of RT and ORN diagnosis was 32.6 months. The pairwise correlation omitted 432 features with a correlation ≥ 0.99. After that, the first step of the radiomic features engineering (using the filter algorithm) resulted in the selection of 33 radiomic features with statistically significant results in all the following three statistical methods: Pearson correlation, Chi-square test, and F-score. The RFE based on the Gini index selected 5 radiomics features. The final classifier used SVM with linear Kernel. The input for this classifier was the final set of radiomic features (N=5). We validated this binary classification model using 5-fold cross-validation. During this validation, the range of AUC was (0.84–0.95) & the average AUC was 0.90. Conclusion We successfully used imaging radiomic features to construct an accurate model (AUC= 0.90) to discriminate ORN versus normal mandibular bone in head and neck cancer patients. Future studies are needed to validate this model in prospective studies to early detect ORN in head and neck cancer patients after radiation treatment. This study aims to identify radiomic features extracted from contrast-enhanced CT scans that differentiate osteoradionecrosis (ORN) from normal mandibular bone in head and neck cancer patients treated with radiotherapy. Contrast-enhanced CT images were collected for patients with confirmed ORN diagnosis at MD Anderson Cancer Center between 2008 and 2018. The ORN regions of interest (ROIs) were segmented manually in each image. The control ROIs of the contralateral health mandible were generated by a Python script then adjusted manually in each image. Commercial software was then used to extract the radiomic features from both ORN and control ROIs after the application of intrinsic filters. The pairwise correlation filter was used to remove radiomic features whose pairwise correlation was ≥0.99. Filter algorithms were then used to further reduce the number of radiomic features. After that, wrapper and embedded methods were applied on the resulting radiomic features. Finally, Gini importance and Recursive Feature Elimination (RFE) were used to select the final radiomic features for the predictive model. The support vector machine (SVM) with linear kernel was used for the binary classification of ORN and normal mandibular bone. The performance of the model was evaluated using the Area Under Curve (AUC). A total of 150 patients with radiologically established ORN were included in our study. The mean age was 62.3 years (range 27-82). The mean duration between the end of RT and ORN diagnosis was 32.6 months. The pairwise correlation omitted 432 features with a correlation ≥ 0.99. After that, the first step of the radiomic features engineering (using the filter algorithm) resulted in the selection of 33 radiomic features with statistically significant results in all the following three statistical methods: Pearson correlation, Chi-square test, and F-score. The RFE based on the Gini index selected 5 radiomics features. The final classifier used SVM with linear Kernel. The input for this classifier was the final set of radiomic features (N=5). We validated this binary classification model using 5-fold cross-validation. During this validation, the range of AUC was (0.84–0.95) & the average AUC was 0.90. We successfully used imaging radiomic features to construct an accurate model (AUC= 0.90) to discriminate ORN versus normal mandibular bone in head and neck cancer patients. Future studies are needed to validate this model in prospective studies to early detect ORN in head and neck cancer patients after radiation treatment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852发布了新的文献求助10
1秒前
英俊的铭应助阜睿采纳,获得10
1秒前
小学生库里完成签到,获得积分10
1秒前
overlood完成签到 ,获得积分10
3秒前
科研通AI2S应助yeerenn采纳,获得10
4秒前
wangcaoyi667发布了新的文献求助10
4秒前
9秒前
野生狐狸完成签到,获得积分10
11秒前
wangcaoyi667完成签到,获得积分10
12秒前
12秒前
默默纲发布了新的文献求助30
14秒前
15秒前
个性的紫菜应助yeye采纳,获得10
16秒前
海派Hi完成签到 ,获得积分10
18秒前
18秒前
xiaomeng发布了新的文献求助10
19秒前
迹K完成签到,获得积分10
19秒前
pan完成签到,获得积分10
20秒前
晁子枫完成签到,获得积分10
22秒前
zzz发布了新的文献求助10
23秒前
cheng完成签到,获得积分10
23秒前
WATCH完成签到,获得积分20
25秒前
25秒前
摆哥完成签到,获得积分10
27秒前
27秒前
CXLGE发布了新的文献求助10
28秒前
胡楠完成签到,获得积分10
30秒前
31秒前
chen完成签到,获得积分10
33秒前
33秒前
打打应助斯丹康采纳,获得10
34秒前
34秒前
习惯完成签到,获得积分20
35秒前
大气傲易完成签到 ,获得积分10
37秒前
38秒前
桐桐应助阿烨采纳,获得10
38秒前
39秒前
39秒前
39秒前
王王完成签到 ,获得积分10
40秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140687
求助须知:如何正确求助?哪些是违规求助? 2791513
关于积分的说明 7799229
捐赠科研通 2447844
什么是DOI,文献DOI怎么找? 1302096
科研通“疑难数据库(出版商)”最低求助积分说明 626439
版权声明 601194