Secondary-metabolites fingerprinting of Argania spinosa kernels using liquid chromatography–mass spectrometry and chemometrics, for metabolite identification and quantification as well as for geographic classification

化学计量学 化学 色谱法 代谢组学 偏最小二乘回归 质谱法 主成分分析 代谢物 线性判别分析 模式识别(心理学) 人工智能 数学 统计 计算机科学 生物化学
作者
Mourad Kharbach,Johan Viaene,Huiwen Yu,Rabie Kamal,Ilias Marmouzi,Abdelaziz Bouklouze,Yvan Vander Heyden
出处
期刊:Journal of Chromatography A [Elsevier]
卷期号:1670: 462972-462972 被引量:8
标识
DOI:10.1016/j.chroma.2022.462972
摘要

Argan (Argania spinosa L.) fruit kernels' composition has been poorly studied and received less research intensity than the resulting Argan oil. The Moroccan Argan kernels contain a wealth of metabolites and can be investigated for nutritional and health aspects as well as for economic benefits. Ultra-Performance Liquid Chromatography Mass Spectrometry (UPLC-MS) was employed to trace the geographical origin of Argan kernels based on secondary-metabolite profiles. One-hundred and twenty Argan fruit kernels from five regions ('Agadir', 'Ait-Baha' 'Essaouira', 'Tiznit' and 'Taroudant') were studied. Characterization and quantification of 36 secondary metabolites (33 polyphenolic and 3 non-phenolic) were achieved. Those metabolites are highly influenced by the geographic origin. Then, the untargeted UPLC-MS fingerprint was decomposed by metabolomic data handling tools, such as multivariate curve resolution alternating least squares (MCR-ALS) and XCMS. The two resulting data matrices were pretreated and prepared separately by chemometric tools and then two data fusion strategies (low- and mid-levels) were applied on them. The four data sets were comparatively investigated. Principal component analysis (PCA), Partial Least Squares Discriminant Analysis (PLS-DA), and Soft Independent Modeling of Class Analogies (SIMCA) were used to classify samples. The exploration or classification models demonstrated a good ability to discriminate and classify the samples in the geographical-origin based classes. Summarized, the developed fingerprints and their metabolomics-based data handling successfully allowed geographical traceability evaluation of Moroccan Argan kernels.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
玥越完成签到,获得积分10
刚刚
1秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
谨慎鸽子发布了新的文献求助10
2秒前
研友_VZG7GZ应助小冰采纳,获得30
3秒前
wudi17完成签到,获得积分10
3秒前
3秒前
宁双完成签到,获得积分20
4秒前
打打应助lye采纳,获得10
5秒前
Akim应助傅。采纳,获得10
5秒前
耳东完成签到 ,获得积分10
5秒前
6秒前
艾比西地完成签到 ,获得积分10
6秒前
在水一方应助李迅迅采纳,获得10
6秒前
柳絮旭完成签到 ,获得积分10
6秒前
6秒前
6秒前
樱桃汽水发布了新的文献求助10
7秒前
李健应助叶液采纳,获得10
7秒前
路易狮子完成签到,获得积分10
7秒前
xss发布了新的文献求助10
7秒前
7秒前
8秒前
LXYang发布了新的文献求助10
9秒前
科研通AI2S应助大帅采纳,获得10
9秒前
NexusExplorer应助glacial采纳,获得10
9秒前
9秒前
lukey完成签到,获得积分10
9秒前
宁双发布了新的文献求助20
10秒前
wanci应助wxl采纳,获得10
10秒前
lm发布了新的文献求助10
10秒前
10秒前
BowieHuang应助zh1858f采纳,获得10
11秒前
shi发布了新的文献求助10
11秒前
乐乐应助哈哈哈哈哈哈采纳,获得10
11秒前
11秒前
el完成签到,获得积分10
11秒前
12秒前
XuanZhang完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5775976
求助须知:如何正确求助?哪些是违规求助? 5627280
关于积分的说明 15440657
捐赠科研通 4908271
什么是DOI,文献DOI怎么找? 2641135
邀请新用户注册赠送积分活动 1588932
关于科研通互助平台的介绍 1543784