Secondary-metabolites fingerprinting of Argania spinosa kernels using liquid chromatography–mass spectrometry and chemometrics, for metabolite identification and quantification as well as for geographic classification

化学计量学 化学 色谱法 代谢组学 偏最小二乘回归 质谱法 主成分分析 代谢物 线性判别分析 模式识别(心理学) 人工智能 数学 统计 计算机科学 生物化学
作者
Mourad Kharbach,Johan Viaene,Huiwen Yu,Rabie Kamal,Ilias Marmouzi,Abdelaziz Bouklouze,Yvan Vander Heyden
出处
期刊:Journal of Chromatography A [Elsevier]
卷期号:1670: 462972-462972 被引量:8
标识
DOI:10.1016/j.chroma.2022.462972
摘要

Argan (Argania spinosa L.) fruit kernels' composition has been poorly studied and received less research intensity than the resulting Argan oil. The Moroccan Argan kernels contain a wealth of metabolites and can be investigated for nutritional and health aspects as well as for economic benefits. Ultra-Performance Liquid Chromatography Mass Spectrometry (UPLC-MS) was employed to trace the geographical origin of Argan kernels based on secondary-metabolite profiles. One-hundred and twenty Argan fruit kernels from five regions ('Agadir', 'Ait-Baha' 'Essaouira', 'Tiznit' and 'Taroudant') were studied. Characterization and quantification of 36 secondary metabolites (33 polyphenolic and 3 non-phenolic) were achieved. Those metabolites are highly influenced by the geographic origin. Then, the untargeted UPLC-MS fingerprint was decomposed by metabolomic data handling tools, such as multivariate curve resolution alternating least squares (MCR-ALS) and XCMS. The two resulting data matrices were pretreated and prepared separately by chemometric tools and then two data fusion strategies (low- and mid-levels) were applied on them. The four data sets were comparatively investigated. Principal component analysis (PCA), Partial Least Squares Discriminant Analysis (PLS-DA), and Soft Independent Modeling of Class Analogies (SIMCA) were used to classify samples. The exploration or classification models demonstrated a good ability to discriminate and classify the samples in the geographical-origin based classes. Summarized, the developed fingerprints and their metabolomics-based data handling successfully allowed geographical traceability evaluation of Moroccan Argan kernels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
务实的紫伊完成签到,获得积分10
刚刚
从容的迎蓉完成签到,获得积分10
1秒前
DUAN完成签到,获得积分10
1秒前
鹅女士完成签到,获得积分10
4秒前
Sherry发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
超级幻梅完成签到,获得积分10
6秒前
恶恶么v发布了新的文献求助10
8秒前
mmmm应助enen采纳,获得10
8秒前
故笺完成签到,获得积分10
10秒前
123发布了新的文献求助10
10秒前
五角星发布了新的文献求助10
11秒前
活力灵波发布了新的文献求助10
11秒前
Sherry完成签到,获得积分10
13秒前
xxw完成签到,获得积分10
13秒前
yefeng完成签到,获得积分10
14秒前
科研通AI2S应助旺旺碎冰冰采纳,获得10
14秒前
15秒前
16秒前
Akim应助五角星采纳,获得10
16秒前
zw发布了新的文献求助10
16秒前
18秒前
18秒前
18秒前
草拟大坝发布了新的文献求助10
19秒前
范范完成签到,获得积分20
20秒前
嘎嘎嘎嘎应助zz采纳,获得20
21秒前
22秒前
22秒前
小田发布了新的文献求助10
22秒前
123完成签到,获得积分10
23秒前
丘比特应助zw采纳,获得10
24秒前
清秋完成签到 ,获得积分10
24秒前
111xasb完成签到,获得积分10
25秒前
活力灵波完成签到,获得积分10
27秒前
1234发布了新的文献求助10
27秒前
敏感的星星完成签到 ,获得积分10
30秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155908
求助须知:如何正确求助?哪些是违规求助? 2807136
关于积分的说明 7871997
捐赠科研通 2465497
什么是DOI,文献DOI怎么找? 1312260
科研通“疑难数据库(出版商)”最低求助积分说明 629958
版权声明 601905