Secondary-metabolites fingerprinting of Argania spinosa kernels using liquid chromatography–mass spectrometry and chemometrics, for metabolite identification and quantification as well as for geographic classification

化学计量学 化学 色谱法 代谢组学 偏最小二乘回归 质谱法 主成分分析 代谢物 线性判别分析 模式识别(心理学) 人工智能 数学 统计 计算机科学 生物化学
作者
Mourad Kharbach,Johan Viaene,Huiwen Yu,Rabie Kamal,Ilias Marmouzi,Abdelaziz Bouklouze,Yvan Vander Heyden
出处
期刊:Journal of Chromatography A [Elsevier BV]
卷期号:1670: 462972-462972 被引量:8
标识
DOI:10.1016/j.chroma.2022.462972
摘要

Argan (Argania spinosa L.) fruit kernels' composition has been poorly studied and received less research intensity than the resulting Argan oil. The Moroccan Argan kernels contain a wealth of metabolites and can be investigated for nutritional and health aspects as well as for economic benefits. Ultra-Performance Liquid Chromatography Mass Spectrometry (UPLC-MS) was employed to trace the geographical origin of Argan kernels based on secondary-metabolite profiles. One-hundred and twenty Argan fruit kernels from five regions ('Agadir', 'Ait-Baha' 'Essaouira', 'Tiznit' and 'Taroudant') were studied. Characterization and quantification of 36 secondary metabolites (33 polyphenolic and 3 non-phenolic) were achieved. Those metabolites are highly influenced by the geographic origin. Then, the untargeted UPLC-MS fingerprint was decomposed by metabolomic data handling tools, such as multivariate curve resolution alternating least squares (MCR-ALS) and XCMS. The two resulting data matrices were pretreated and prepared separately by chemometric tools and then two data fusion strategies (low- and mid-levels) were applied on them. The four data sets were comparatively investigated. Principal component analysis (PCA), Partial Least Squares Discriminant Analysis (PLS-DA), and Soft Independent Modeling of Class Analogies (SIMCA) were used to classify samples. The exploration or classification models demonstrated a good ability to discriminate and classify the samples in the geographical-origin based classes. Summarized, the developed fingerprints and their metabolomics-based data handling successfully allowed geographical traceability evaluation of Moroccan Argan kernels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xielunwen发布了新的文献求助10
1秒前
宿亮东发布了新的文献求助10
1秒前
2秒前
3秒前
852应助墨客采纳,获得10
3秒前
加薪完成签到,获得积分10
3秒前
4秒前
杨琳发布了新的文献求助10
4秒前
勤恳兔子完成签到,获得积分20
5秒前
aaa发布了新的文献求助10
5秒前
小豆豆应助ty采纳,获得10
6秒前
6秒前
7秒前
文武贝完成签到,获得积分10
7秒前
Deny完成签到 ,获得积分10
7秒前
搜集达人应助好好采纳,获得30
8秒前
Patrick发布了新的文献求助10
8秒前
夏天完成签到,获得积分10
9秒前
勤恳兔子发布了新的文献求助10
9秒前
英姑应助宿亮东采纳,获得10
10秒前
Yu发布了新的文献求助10
11秒前
xl完成签到,获得积分10
11秒前
辉仔发布了新的文献求助10
12秒前
li发布了新的文献求助10
12秒前
12秒前
13秒前
NexusExplorer应助杨琳采纳,获得10
14秒前
breaddog完成签到,获得积分10
14秒前
15秒前
PPSlu完成签到,获得积分10
15秒前
xl发布了新的文献求助10
15秒前
orixero应助天天向上采纳,获得10
15秒前
16秒前
Winfred发布了新的文献求助10
17秒前
怕黑的静蕾应助语上采纳,获得20
17秒前
桐桐应助开心的勇敢采纳,获得10
18秒前
好好完成签到,获得积分20
19秒前
李孤山完成签到,获得积分10
19秒前
xielunwen完成签到,获得积分10
20秒前
20秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966681
求助须知:如何正确求助?哪些是违规求助? 3512151
关于积分的说明 11161937
捐赠科研通 3246996
什么是DOI,文献DOI怎么找? 1793640
邀请新用户注册赠送积分活动 874520
科研通“疑难数据库(出版商)”最低求助积分说明 804421