A Constrained Many-Objective Optimization Evolutionary Algorithm With Enhanced Mating and Environmental Selections

数学优化 趋同(经济学) 进化算法 排名(信息检索) 计算机科学 选择(遗传算法) 最优化问题 多样性(政治) 数学 机器学习 经济 人类学 经济增长 社会学
作者
Fei Ming,Wenyin Gong,Ling Wang,Liang Gao
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:53 (8): 4934-4946 被引量:24
标识
DOI:10.1109/tcyb.2022.3151793
摘要

Unlike the considerable research on solving many-objective optimization problems (MaOPs) with evolutionary algorithms (EAs), there has been much less research on constrained MaOPs (CMaOPs). Generally, to effectively solve CMaOPs, an algorithm needs to balance feasibility, convergence, and diversity simultaneously. It is essential for handling CMaOPs yet most of the existing research encounters difficulties. This article proposes a novel constrained many-objective optimization EA with enhanced mating and environmental selections, namely, CMME. It can be featured as: 1) two novel ranking strategies are proposed and used in the mating and environmental selections to enrich feasibility, diversity, and convergence; 2) a novel individual density estimation is designed, and the crowding distance is integrated to promote diversity; and 3) the θ -dominance is used to strengthen the selection pressure on promoting both the convergence and diversity. The synergy of these components can achieve the goal of balancing feasibility, convergence, and diversity for solving CMaOPs. The proposed CMME is extensively evaluated on 13 CMaOPs and 3 real-world applications. Experimental results demonstrate the superiority and competitiveness of CMME over nine related algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Brightan完成签到,获得积分10
刚刚
bkagyin应助weixin112233采纳,获得10
刚刚
慕青应助梁晓玲采纳,获得10
2秒前
3秒前
小马甲应助孙伟健采纳,获得10
4秒前
5秒前
聪明钢铁侠完成签到,获得积分10
5秒前
6秒前
6秒前
科研通AI5应助刘欣欣采纳,获得10
7秒前
7秒前
拾荒者发布了新的文献求助10
9秒前
10秒前
王也笑然完成签到,获得积分10
10秒前
10秒前
鲤鱼千青菜完成签到,获得积分10
11秒前
猪猪玉完成签到 ,获得积分10
11秒前
王也笑然发布了新的文献求助10
13秒前
月月想长高完成签到,获得积分10
13秒前
闻风听雨完成签到,获得积分10
13秒前
13秒前
ZoeZhang发布了新的文献求助10
14秒前
15秒前
15秒前
Zn应助笨笨鲜花采纳,获得10
15秒前
15秒前
16秒前
17秒前
元问晴完成签到,获得积分10
17秒前
万能图书馆应助代杰居然采纳,获得10
18秒前
打工不可能完成签到,获得积分10
19秒前
ss完成签到,获得积分10
19秒前
星辰大海应助孟长歌采纳,获得10
20秒前
隐形曼青应助cyh采纳,获得10
21秒前
jing111完成签到,获得积分10
21秒前
GodMG完成签到,获得积分10
21秒前
聪明帅哥完成签到,获得积分10
21秒前
21秒前
脑洞疼应助斯文的世界采纳,获得10
21秒前
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
The Laschia-complex (Basidiomycetes) 600
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3540927
求助须知:如何正确求助?哪些是违规求助? 3118176
关于积分的说明 9334158
捐赠科研通 2816036
什么是DOI,文献DOI怎么找? 1548081
邀请新用户注册赠送积分活动 721291
科研通“疑难数据库(出版商)”最低求助积分说明 712643