Multimodal Deep Learning via Late Fusion for Non-Destructive Papaya Fruit Maturity Classification

人工智能 高光谱成像 计算机科学 深度学习 卷积神经网络 特征(语言学) 机器学习 成熟度(心理) 模式识别(心理学) 人工神经网络 特征提取 多模态 心理学 万维网 发展心理学 哲学 语言学
作者
Cinmayii Manliguez,John Y. Chiang
标识
DOI:10.1109/cce53527.2021.9633060
摘要

Maturity of fruits significantly affects various areas of the agriculture industry such as the quality assurance of agricultural products, supply chain, and marketing. However, classifying papaya fruit maturity given six ripeness stages with precision remains a challenge since most changes happen inside the fruit rather than the external characteristics, which are quite similar between stages. Using internal properties in classification would require destructive and time-consuming laboratory tests. With the emergence of deep learning and imaging technologies, data with high dimensions, which correlates with internal and external characteristics of an object such as those produced by hyperspectral cameras, can be processed to perform a high-level intelligent classification task without impairing the fruit. In this paper, we present an AI-derived non-destructive approach that utilizes hyperspectral and visible-light images in estimating the papaya fruit maturity stage and implements multimodality via late fusion of imaging-specific networks. The proposed multimodal architecture is composed of imaging-specific deep convolutional neural networks as base learners and a meta-learner that executes late fusion of the dual unimodal networks. Multiclass logistic regression and averaging are explored as the meta-learners of the multimodal fused network that generates the final classifications. Experimental results of the proposed multimodal-late fused models are compared with the multimodal-feature concatenation approach for estimation of papaya fruit maturity, and our proposed model framework obtained an improved F1-score of up to 0.97. This indicates that multimodal-late fused architecture and multimodal imaging systems have great potential for agricultural and other industrial applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
果实发布了新的文献求助10
刚刚
刚刚
棋士发布了新的文献求助10
1秒前
SciGPT应助月yue采纳,获得10
1秒前
NexusExplorer应助李Li采纳,获得10
1秒前
雨齐完成签到,获得积分10
1秒前
机智的白猫完成签到,获得积分10
1秒前
chaoqi完成签到,获得积分10
3秒前
jignjing完成签到,获得积分10
3秒前
QC发布了新的文献求助10
4秒前
PiCarQ发布了新的文献求助10
4秒前
罗小黑完成签到,获得积分10
4秒前
甜美三娘应助飞云采纳,获得10
5秒前
5秒前
无辜哑铃完成签到,获得积分10
5秒前
6秒前
无花果应助coffee333采纳,获得10
6秒前
momo发布了新的文献求助10
6秒前
自由香魔发布了新的文献求助10
7秒前
更远的天空完成签到,获得积分10
7秒前
7秒前
明天,你好完成签到,获得积分10
8秒前
8秒前
8秒前
罗小黑发布了新的文献求助10
8秒前
李健应助Chacha采纳,获得10
8秒前
9秒前
9秒前
9秒前
11秒前
万能图书馆应助博修采纳,获得10
11秒前
牛牛牛发布了新的文献求助10
11秒前
11秒前
Teresa发布了新的文献求助10
12秒前
PaoPao发布了新的文献求助10
13秒前
斯文败类应助沉静从蓉采纳,获得10
13秒前
luw2018发布了新的文献求助10
14秒前
14秒前
14秒前
15秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960796
求助须知:如何正确求助?哪些是违规求助? 3506987
关于积分的说明 11133209
捐赠科研通 3239307
什么是DOI,文献DOI怎么找? 1790107
邀请新用户注册赠送积分活动 872145
科研通“疑难数据库(出版商)”最低求助积分说明 803149