Multimodal Deep Learning via Late Fusion for Non-Destructive Papaya Fruit Maturity Classification

人工智能 高光谱成像 计算机科学 深度学习 卷积神经网络 特征(语言学) 机器学习 成熟度(心理) 模式识别(心理学) 人工神经网络 特征提取 多模态 心理学 万维网 发展心理学 哲学 语言学
作者
Cinmayii Manliguez,John Y. Chiang
标识
DOI:10.1109/cce53527.2021.9633060
摘要

Maturity of fruits significantly affects various areas of the agriculture industry such as the quality assurance of agricultural products, supply chain, and marketing. However, classifying papaya fruit maturity given six ripeness stages with precision remains a challenge since most changes happen inside the fruit rather than the external characteristics, which are quite similar between stages. Using internal properties in classification would require destructive and time-consuming laboratory tests. With the emergence of deep learning and imaging technologies, data with high dimensions, which correlates with internal and external characteristics of an object such as those produced by hyperspectral cameras, can be processed to perform a high-level intelligent classification task without impairing the fruit. In this paper, we present an AI-derived non-destructive approach that utilizes hyperspectral and visible-light images in estimating the papaya fruit maturity stage and implements multimodality via late fusion of imaging-specific networks. The proposed multimodal architecture is composed of imaging-specific deep convolutional neural networks as base learners and a meta-learner that executes late fusion of the dual unimodal networks. Multiclass logistic regression and averaging are explored as the meta-learners of the multimodal fused network that generates the final classifications. Experimental results of the proposed multimodal-late fused models are compared with the multimodal-feature concatenation approach for estimation of papaya fruit maturity, and our proposed model framework obtained an improved F1-score of up to 0.97. This indicates that multimodal-late fused architecture and multimodal imaging systems have great potential for agricultural and other industrial applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
曾经寄文完成签到,获得积分10
1秒前
BENpao123发布了新的文献求助10
1秒前
细腻天德完成签到,获得积分10
1秒前
2秒前
Ava应助Zuguo采纳,获得10
2秒前
搜集达人应助学习达人采纳,获得10
5秒前
舒心妙菱完成签到,获得积分10
7秒前
Ryan发布了新的文献求助10
7秒前
刻苦秋尽发布了新的文献求助10
7秒前
11秒前
Gandiva完成签到,获得积分10
11秒前
11秒前
向日葵发布了新的文献求助10
12秒前
科研通AI6应助JJJ采纳,获得10
16秒前
16秒前
jf关注了科研通微信公众号
17秒前
金条完成签到,获得积分10
18秒前
19秒前
19秒前
20秒前
要减肥白开水完成签到,获得积分10
20秒前
ChristineJay完成签到,获得积分10
20秒前
20010完成签到,获得积分10
21秒前
SixDogs发布了新的文献求助13
22秒前
22秒前
搞笑地雷完成签到 ,获得积分10
22秒前
11完成签到,获得积分10
23秒前
贺格平发布了新的文献求助10
23秒前
小董完成签到,获得积分20
26秒前
BENpao123发布了新的文献求助10
26秒前
所所应助无问西东采纳,获得10
27秒前
27秒前
28秒前
bombing2048完成签到 ,获得积分10
29秒前
Hello应助谦让寄容采纳,获得10
29秒前
香蕉觅云应助Wenyilong采纳,获得10
29秒前
31秒前
lml发布了新的文献求助10
31秒前
32秒前
32秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5342574
求助须知:如何正确求助?哪些是违规求助? 4478451
关于积分的说明 13939383
捐赠科研通 4375015
什么是DOI,文献DOI怎么找? 2403911
邀请新用户注册赠送积分活动 1396509
关于科研通互助平台的介绍 1368648