Multimodal Deep Learning via Late Fusion for Non-Destructive Papaya Fruit Maturity Classification

人工智能 高光谱成像 计算机科学 深度学习 卷积神经网络 特征(语言学) 机器学习 成熟度(心理) 模式识别(心理学) 人工神经网络 特征提取 多模态 心理学 万维网 发展心理学 哲学 语言学
作者
Cinmayii Manliguez,John Y. Chiang
标识
DOI:10.1109/cce53527.2021.9633060
摘要

Maturity of fruits significantly affects various areas of the agriculture industry such as the quality assurance of agricultural products, supply chain, and marketing. However, classifying papaya fruit maturity given six ripeness stages with precision remains a challenge since most changes happen inside the fruit rather than the external characteristics, which are quite similar between stages. Using internal properties in classification would require destructive and time-consuming laboratory tests. With the emergence of deep learning and imaging technologies, data with high dimensions, which correlates with internal and external characteristics of an object such as those produced by hyperspectral cameras, can be processed to perform a high-level intelligent classification task without impairing the fruit. In this paper, we present an AI-derived non-destructive approach that utilizes hyperspectral and visible-light images in estimating the papaya fruit maturity stage and implements multimodality via late fusion of imaging-specific networks. The proposed multimodal architecture is composed of imaging-specific deep convolutional neural networks as base learners and a meta-learner that executes late fusion of the dual unimodal networks. Multiclass logistic regression and averaging are explored as the meta-learners of the multimodal fused network that generates the final classifications. Experimental results of the proposed multimodal-late fused models are compared with the multimodal-feature concatenation approach for estimation of papaya fruit maturity, and our proposed model framework obtained an improved F1-score of up to 0.97. This indicates that multimodal-late fused architecture and multimodal imaging systems have great potential for agricultural and other industrial applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AAA专业叉车完成签到,获得积分10
刚刚
在水一方应助遇见采纳,获得10
1秒前
1秒前
1秒前
跳跃的太君完成签到,获得积分10
1秒前
2秒前
One发布了新的文献求助10
2秒前
科研通AI6应助Danny采纳,获得10
2秒前
梁叔完成签到 ,获得积分10
2秒前
lh发布了新的文献求助10
3秒前
瑞仔完成签到,获得积分10
3秒前
小凯完成签到,获得积分10
4秒前
莹0000发布了新的文献求助10
4秒前
认真的恶天完成签到 ,获得积分10
4秒前
happynewyear完成签到,获得积分20
5秒前
跳跃老五完成签到 ,获得积分10
6秒前
愤怒的蓝天完成签到,获得积分10
6秒前
晓世完成签到,获得积分10
7秒前
杨婷姗发布了新的文献求助10
7秒前
徐文楚发布了新的文献求助10
7秒前
9秒前
茶辞完成签到 ,获得积分10
10秒前
科研通AI6应助莫筱铭采纳,获得10
10秒前
11秒前
杨云完成签到 ,获得积分10
11秒前
11秒前
12秒前
xuyi完成签到,获得积分10
12秒前
xhuryts完成签到,获得积分10
13秒前
十七完成签到 ,获得积分10
14秒前
15秒前
15秒前
赘婿应助莹0000采纳,获得10
16秒前
刘星星完成签到 ,获得积分10
16秒前
YANG发布了新的文献求助10
16秒前
Gcy丶发布了新的文献求助10
16秒前
土豆子完成签到 ,获得积分10
17秒前
17秒前
遇见发布了新的文献求助10
18秒前
邓邓发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600134
求助须知:如何正确求助?哪些是违规求助? 4685840
关于积分的说明 14839918
捐赠科研通 4675103
什么是DOI,文献DOI怎么找? 2538540
邀请新用户注册赠送积分活动 1505668
关于科研通互助平台的介绍 1471124