计算机科学
人工智能
杠杆(统计)
分割
帕斯卡(单位)
质心
训练集
卷积神经网络
机器学习
地铁列车时刻表
试验装置
图像分割
模式识别(心理学)
操作系统
程序设计语言
作者
Yi Zhu,Zhongyue Zhang,Chongruo Wu,Zhi Zhang,Tong He,Hang Zhang,R. Manmatha,Mu Li,Alexander J. Smola
标识
DOI:10.1109/tpami.2021.3138337
摘要
Starting from the seminal work of Fully Convolutional Networks (FCN), there has been significant progress on semantic segmentation. However, deep learning models often require large amounts of pixelwise annotations to train accurate and robust models. Given the prohibitively expensive annotation cost of segmentation masks, we introduce a self-training framework in this paper to leverage pseudo labels generated from unlabeled data. In order to handle the data imbalance problem of semantic segmentation, we propose a centroid sampling strategy to uniformly select training samples from every class within each epoch. We also introduce a fast training schedule to alleviate the computational burden. This enables us to explore the usage of large amounts of pseudo labels. Our Centroid Sampling based Self-Training framework (CSST) achieves state-of-the-art results on Cityscapes and CamVid datasets. On PASCAL VOC 2012 test set, our models trained with the original train set even outperform the same models trained on the much bigger augmented train set. This indicates the effectiveness of CSST when there are fewer annotations. We also demonstrate promising few-shot generalization capability from Cityscapes to BDD100K and from Cityscapes to Mapillary datasets.
科研通智能强力驱动
Strongly Powered by AbleSci AI