Online Hard Patch Mining Using Shape Models and Bandit Algorithm for Multi-Organ Segmentation

计算机科学 分割 Boosting(机器学习) 趋同(经济学) 数据挖掘 人工智能 选择(遗传算法) 采样(信号处理) 样品(材料) 机器学习 图像分割 过程(计算) 模式识别(心理学) 计算机视觉 经济增长 色谱法 滤波器(信号处理) 操作系统 经济 化学
作者
Jianan He,Guangquan Zhou,Shoujun Zhou,Yang Chen
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (6): 2648-2659 被引量:6
标识
DOI:10.1109/jbhi.2021.3136597
摘要

Hard sample selection can effectively improve model convergence by extracting the most representative samples from a training set. However, due to the large capacity of medical images, existing sampling strategies suffer from insufficient exploitation for hard samples or high time cost for sample selection when adopted by 3D patch-based models in the field of multi-organ segmentation. In this paper, we present a novel and effective online hard patch mining (OHPM) algorithm. In our method, an average shape model that can be mapped with all training images is constructed to guide the exploration of hard patches and aggregate feedback from predicted patches. The process of hard mining is formalized as a multi-armed bandit problem and solved with bandit algorithms. With the shape model, OHPM requires negligible time consumption and can intuitively locate difficult anatomical areas during training. The employment of bandit algorithms ensures online and sufficient hard mining. We integrate OHPM with advanced segmentation networks and evaluate them on two datasets containing different anatomical structures. Comparative experiments with other sampling strategies demonstrate the superiority of OHPM in boosting segmentation performance and improving model convergence. The results in each dataset with each network suggest that OHPM significantly outperforms other sampling strategies by nearly 2% average Dice score.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
milewangzi发布了新的文献求助10
1秒前
1秒前
4秒前
彭于晏应助hanggai采纳,获得10
4秒前
材料生发布了新的文献求助10
4秒前
4秒前
duanduan发布了新的文献求助10
6秒前
劲秉应助Passion采纳,获得10
6秒前
7秒前
天天快乐应助不会取名字采纳,获得10
7秒前
4qfguj完成签到,获得积分10
7秒前
SYLH应助呆萌的小之采纳,获得10
8秒前
8秒前
赶快毕业发布了新的文献求助10
8秒前
9秒前
求文完成签到 ,获得积分20
9秒前
萨米does123发布了新的文献求助10
9秒前
泡沫发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
CTKSYM完成签到,获得积分10
10秒前
10秒前
10秒前
天天啊发布了新的文献求助10
11秒前
文艺南松完成签到,获得积分20
12秒前
12秒前
脑洞疼应助健壮的花生zzz采纳,获得10
12秒前
Chemistry发布了新的文献求助10
12秒前
酷酷铭发布了新的文献求助10
13秒前
星辰大海应助知性的友易采纳,获得10
14秒前
文艺南松发布了新的文献求助10
14秒前
14秒前
滴滴滴发布了新的文献求助10
15秒前
沉静的海豚完成签到,获得积分10
15秒前
15秒前
姜维发布了新的文献求助10
16秒前
16秒前
18秒前
萨米does123完成签到,获得积分10
18秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3470584
求助须知:如何正确求助?哪些是违规求助? 3063615
关于积分的说明 9084626
捐赠科研通 2754092
什么是DOI,文献DOI怎么找? 1511215
邀请新用户注册赠送积分活动 698347
科研通“疑难数据库(出版商)”最低求助积分说明 698221