亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Improved Permeability Prediction of Porous Media by Feature Selection and Machine Learning Methods Comparison

特征选择 磁导率 人工神经网络 多孔介质 支持向量机 粒子群优化 计算机科学 岩石物理学 曲折 随机森林 人工智能 机器学习 多孔性 工程类 岩土工程 化学 生物化学
作者
Jianwei Tian,Chongchong Qi,Kang Peng,Yingfeng Sun,Zaher Mundher Yaseen‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬
出处
期刊:Journal of Computing in Civil Engineering [American Society of Civil Engineers]
卷期号:36 (2) 被引量:9
标识
DOI:10.1061/(asce)cp.1943-5487.0000983
摘要

Permeability of subsurface porous media is one of the primary factors that affect fluid transport in porous rock. However, accurate prediction of rock permeability is a challenging task due to its intricate pore network. Development of digital rocks provides an effective approach to reveal and characterize the pore network. In this paper, a combination of digital rock petrophysics and ensemble machine learning (ML) models is proposed to improve the permeability prediction of subsurface porous media. The permeability of the numerically generated porous samples as outputs was determined by the lattice Boltzmann method (LBM). The five most important parameters (porosity, tortuosity, fractal dimension, average pore diameter, and coordination number) were selected as inputs for the permeability prediction. To improve the accuracy, feature selection and ML methods comparisons were conducted. Three feature selection methods based on expert knowledge, correlation coefficient, and importance score were compared. Moreover, a comparison was performed on six ML methods (support vector machine, artificial neural network, decision tree, random forest, gradient-boosting machine, and Bayesian ridge regression) that were optimized by particle swarm optimization (PSO). The results indicated that (1) the feature selection based on the expert knowledge obtained a higher performance than the groups based on the correlation coefficient and importance score, implying the importance of expert knowledge on feature selection, and thus on ML performance; (2) artificial neural network with hyperparameter tuning achieved the best performance in predicting permeability; and (3) the optimized ML method outperformed the empirical equations in predicting permeability. In conclusion, this study provides a fast and reliable approach predicting permeability of subsurface porous media based on numerically generated porous images. Moreover, the proposed framework can be further extended to determine other petrophysical properties, for example, the relative permeability and thermal conductivity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
nanali19完成签到,获得积分10
6秒前
万能图书馆应助sofardli采纳,获得10
24秒前
33秒前
量子星尘发布了新的文献求助10
47秒前
曦麟完成签到 ,获得积分10
57秒前
57秒前
斯文败类应助科研通管家采纳,获得10
57秒前
1分钟前
Lin发布了新的文献求助10
1分钟前
1分钟前
SCINEXUS完成签到,获得积分0
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
老迟到的梦旋完成签到 ,获得积分10
2分钟前
2分钟前
负责以山完成签到 ,获得积分10
2分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
cc应助科研通管家采纳,获得10
2分钟前
一只小锦鲤完成签到 ,获得积分10
3分钟前
西山菩提完成签到,获得积分10
3分钟前
量子星尘发布了新的文献求助20
4分钟前
lixuebin完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
sujingbo发布了新的文献求助100
4分钟前
sofardli发布了新的文献求助10
4分钟前
4分钟前
charliechen完成签到 ,获得积分10
5分钟前
sofardli完成签到,获得积分10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
嗯嗯嗯哦哦哦完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
5分钟前
6分钟前
6分钟前
碗碗豆喵完成签到 ,获得积分10
6分钟前
量子星尘发布了新的文献求助10
6分钟前
6分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957065
求助须知:如何正确求助?哪些是违规求助? 3503084
关于积分的说明 11111255
捐赠科研通 3234124
什么是DOI,文献DOI怎么找? 1787751
邀请新用户注册赠送积分活动 870772
科研通“疑难数据库(出版商)”最低求助积分说明 802264