亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Improved Permeability Prediction of Porous Media by Feature Selection and Machine Learning Methods Comparison

特征选择 磁导率 人工神经网络 多孔介质 支持向量机 粒子群优化 计算机科学 岩石物理学 曲折 随机森林 人工智能 机器学习 多孔性 工程类 岩土工程 化学 生物化学
作者
Jianwei Tian,Chongchong Qi,Kang Peng,Yingfeng Sun,Zaher Mundher Yaseen‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬
出处
期刊:Journal of Computing in Civil Engineering [American Society of Civil Engineers]
卷期号:36 (2) 被引量:9
标识
DOI:10.1061/(asce)cp.1943-5487.0000983
摘要

Permeability of subsurface porous media is one of the primary factors that affect fluid transport in porous rock. However, accurate prediction of rock permeability is a challenging task due to its intricate pore network. Development of digital rocks provides an effective approach to reveal and characterize the pore network. In this paper, a combination of digital rock petrophysics and ensemble machine learning (ML) models is proposed to improve the permeability prediction of subsurface porous media. The permeability of the numerically generated porous samples as outputs was determined by the lattice Boltzmann method (LBM). The five most important parameters (porosity, tortuosity, fractal dimension, average pore diameter, and coordination number) were selected as inputs for the permeability prediction. To improve the accuracy, feature selection and ML methods comparisons were conducted. Three feature selection methods based on expert knowledge, correlation coefficient, and importance score were compared. Moreover, a comparison was performed on six ML methods (support vector machine, artificial neural network, decision tree, random forest, gradient-boosting machine, and Bayesian ridge regression) that were optimized by particle swarm optimization (PSO). The results indicated that (1) the feature selection based on the expert knowledge obtained a higher performance than the groups based on the correlation coefficient and importance score, implying the importance of expert knowledge on feature selection, and thus on ML performance; (2) artificial neural network with hyperparameter tuning achieved the best performance in predicting permeability; and (3) the optimized ML method outperformed the empirical equations in predicting permeability. In conclusion, this study provides a fast and reliable approach predicting permeability of subsurface porous media based on numerically generated porous images. Moreover, the proposed framework can be further extended to determine other petrophysical properties, for example, the relative permeability and thermal conductivity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
花园里的蒜完成签到 ,获得积分0
12秒前
alan完成签到 ,获得积分10
43秒前
黄少侠完成签到 ,获得积分10
1分钟前
1分钟前
Tingtingzhang完成签到,获得积分10
1分钟前
香蕉觅云应助Tingtingzhang采纳,获得10
1分钟前
zqq完成签到,获得积分0
1分钟前
啾啾咪咪完成签到,获得积分10
2分钟前
VickyZWY完成签到 ,获得积分20
2分钟前
迷路诗云完成签到 ,获得积分10
2分钟前
CATH完成签到 ,获得积分10
2分钟前
小蘑菇应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
1461644768完成签到,获得积分10
3分钟前
汉堡包应助ccc采纳,获得10
3分钟前
3分钟前
3分钟前
花开半夏发布了新的文献求助10
3分钟前
这个手刹不太灵完成签到 ,获得积分10
3分钟前
调皮千兰发布了新的文献求助10
3分钟前
洋芋发布了新的文献求助10
4分钟前
成就仇天完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
fangjc1024发布了新的文献求助10
4分钟前
烟花应助你hao采纳,获得10
4分钟前
领导范儿应助fangjc1024采纳,获得10
4分钟前
深情安青应助科研通管家采纳,获得10
4分钟前
5分钟前
fangjc1024完成签到,获得积分10
5分钟前
5分钟前
王福栋完成签到,获得积分10
5分钟前
你hao发布了新的文献求助10
5分钟前
你hao完成签到,获得积分10
5分钟前
酷波er应助如沐春风采纳,获得10
5分钟前
lixuebin完成签到 ,获得积分10
5分钟前
6分钟前
6分钟前
如沐春风发布了新的文献求助10
6分钟前
yff发布了新的文献求助10
6分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146703
求助须知:如何正确求助?哪些是违规求助? 2798015
关于积分的说明 7826552
捐赠科研通 2454516
什么是DOI,文献DOI怎么找? 1306346
科研通“疑难数据库(出版商)”最低求助积分说明 627704
版权声明 601522