Improved Permeability Prediction of Porous Media by Feature Selection and Machine Learning Methods Comparison

特征选择 磁导率 人工神经网络 多孔介质 支持向量机 粒子群优化 计算机科学 岩石物理学 曲折 随机森林 人工智能 机器学习 多孔性 工程类 岩土工程 化学 生物化学
作者
Jianwei Tian,Chongchong Qi,Kang Peng,Yingfeng Sun,Zaher Mundher Yaseen‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬
出处
期刊:Journal of Computing in Civil Engineering [American Society of Civil Engineers]
卷期号:36 (2) 被引量:9
标识
DOI:10.1061/(asce)cp.1943-5487.0000983
摘要

Permeability of subsurface porous media is one of the primary factors that affect fluid transport in porous rock. However, accurate prediction of rock permeability is a challenging task due to its intricate pore network. Development of digital rocks provides an effective approach to reveal and characterize the pore network. In this paper, a combination of digital rock petrophysics and ensemble machine learning (ML) models is proposed to improve the permeability prediction of subsurface porous media. The permeability of the numerically generated porous samples as outputs was determined by the lattice Boltzmann method (LBM). The five most important parameters (porosity, tortuosity, fractal dimension, average pore diameter, and coordination number) were selected as inputs for the permeability prediction. To improve the accuracy, feature selection and ML methods comparisons were conducted. Three feature selection methods based on expert knowledge, correlation coefficient, and importance score were compared. Moreover, a comparison was performed on six ML methods (support vector machine, artificial neural network, decision tree, random forest, gradient-boosting machine, and Bayesian ridge regression) that were optimized by particle swarm optimization (PSO). The results indicated that (1) the feature selection based on the expert knowledge obtained a higher performance than the groups based on the correlation coefficient and importance score, implying the importance of expert knowledge on feature selection, and thus on ML performance; (2) artificial neural network with hyperparameter tuning achieved the best performance in predicting permeability; and (3) the optimized ML method outperformed the empirical equations in predicting permeability. In conclusion, this study provides a fast and reliable approach predicting permeability of subsurface porous media based on numerically generated porous images. Moreover, the proposed framework can be further extended to determine other petrophysical properties, for example, the relative permeability and thermal conductivity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卓哥完成签到,获得积分10
1秒前
2秒前
Agan发布了新的文献求助10
2秒前
2秒前
3秒前
morlison发布了新的文献求助10
3秒前
科研通AI5应助金色年华采纳,获得10
5秒前
充电宝应助kh453采纳,获得10
5秒前
正经俠发布了新的文献求助10
5秒前
一衣发布了新的文献求助20
6秒前
可爱的函函应助药学牛马采纳,获得10
6秒前
XM发布了新的文献求助10
6秒前
专注之双完成签到,获得积分10
7秒前
SciGPT应助十一采纳,获得10
7秒前
7秒前
A1234完成签到,获得积分10
8秒前
刘铭晨发布了新的文献求助10
9秒前
孙冉冉完成签到 ,获得积分10
12秒前
12秒前
13秒前
13秒前
大模型应助hhzz采纳,获得10
14秒前
一只智慧喵完成签到,获得积分10
14秒前
科目三应助Fundamental采纳,获得10
15秒前
15秒前
miumiuka发布了新的文献求助10
16秒前
greenPASS666发布了新的文献求助10
17秒前
xuanxuan发布了新的文献求助10
17秒前
zfy发布了新的文献求助10
19秒前
19秒前
19秒前
Maor完成签到,获得积分10
19秒前
白菜发布了新的文献求助10
20秒前
20秒前
21秒前
妮妮完成签到 ,获得积分10
23秒前
23秒前
傲娇的凡旋应助spurs17采纳,获得10
23秒前
长情若魔完成签到,获得积分10
25秒前
XM完成签到,获得积分10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808