A simple and effective method for identification of Fraxini Cortex from different sources by multi‐mode fingerprint combined with chemometrics

化学计量学 指纹(计算) 主成分分析 色谱法 线性判别分析 模式识别(心理学) 化学 人工智能 数学 计算机科学
作者
Huali Long,Yao Shuai,Wenshuai Tian,Jinjun Hou,Min Lei,Zijia Zhang,Dean Guo,Wanying Wu
出处
期刊:Journal of Separation Science [Wiley]
卷期号:45 (4): 788-803 被引量:5
标识
DOI:10.1002/jssc.202100784
摘要

Fraxini Cortex has a long history of being used as a medicinal plant in traditional Chinese medicine. However, it is challenging to differentiate and make quality evaluations for Fraxini Cortex from different origins due to their similarities in morphological features, as well as general chemical composition using traditional chemical analytical methods. In this study, a simple and effective method was developed to identify Fraxini Cortex from different origins by multi-mode fingerprint combined with chemometrics. Digital images of the high-performance thin-layer chromatography profiles were converted to grayscale intensity, and the common patterns of high-performance thin-layer chromatography fingerprints were generated with ChemPattern software. Authentication and quality assessment were analyzed by similarity analysis, hierarchical cluster analysis, principal component analysis, and multivariate analysis of variance. The ultra-high-performance liquid chromatography fingerprints were analyzed by similarity analysis, principal component analysis, and orthogonal partial least square-discriminant analysis. When combined with chemometrics, high-performance thin-layer chromatography and ultra-high-performance liquid chromatography fingerprint provided a simple and effective method to evaluate the comprehensive quality of Fraxini Cortex, and to distinguish its two original medicinal materials (Fraxinus chinensis Roxb. and Fraxinus rhynchophylla Hance.) recorded in the Chinese Pharmacopeia and its three adulterants (Fraxinus mandschurica Rupr., Fraxinus pennsylvanica Marsh., and Juglans mandshurica Maxim.). A similar workflow may be applied to establish a differentiation method for other medicinal and economic plants.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiao完成签到 ,获得积分10
1秒前
2秒前
默默早晨完成签到 ,获得积分10
3秒前
yang发布了新的文献求助10
5秒前
科研通AI6应助Jodie采纳,获得10
7秒前
二次元喵酱完成签到,获得积分10
7秒前
xinbowey完成签到,获得积分10
7秒前
鬼切发布了新的文献求助10
9秒前
搜集达人应助跳跃的翼采纳,获得10
11秒前
12秒前
困困羊完成签到 ,获得积分10
12秒前
LN给LN的求助进行了留言
13秒前
Yixuan_Zou完成签到,获得积分10
14秒前
15秒前
神内小天使完成签到,获得积分10
16秒前
Yixuan_Zou发布了新的文献求助10
17秒前
18秒前
19秒前
深情安青应助朴素的松采纳,获得10
21秒前
善学以致用应助伯言采纳,获得10
21秒前
张玮发布了新的文献求助10
23秒前
ri_290完成签到,获得积分10
25秒前
shiori发布了新的文献求助10
25秒前
科研通AI6应助Echo采纳,获得10
25秒前
32秒前
打打应助朴素的松采纳,获得10
32秒前
伯言发布了新的文献求助10
35秒前
NexusExplorer应助Lialilico采纳,获得10
36秒前
风格完成签到,获得积分10
37秒前
kingwhitewing发布了新的文献求助10
38秒前
39秒前
Aron发布了新的文献求助10
39秒前
44秒前
44秒前
烟花应助yang采纳,获得10
45秒前
Owen应助inter采纳,获得10
45秒前
lynn发布了新的文献求助10
49秒前
FLyu发布了新的文献求助10
49秒前
50秒前
小蘑菇应助土豆土豆采纳,获得10
50秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557705
求助须知:如何正确求助?哪些是违规求助? 4642797
关于积分的说明 14669110
捐赠科研通 4584209
什么是DOI,文献DOI怎么找? 2514668
邀请新用户注册赠送积分活动 1488870
关于科研通互助平台的介绍 1459550