A simple and effective method for identification of Fraxini Cortex from different sources by multi‐mode fingerprint combined with chemometrics

化学计量学 指纹(计算) 主成分分析 色谱法 线性判别分析 模式识别(心理学) 化学 人工智能 数学 计算机科学
作者
Huali Long,Yao Shuai,Wenshuai Tian,Jinjun Hou,Min Lei,Zijia Zhang,Dean Guo,Wanying Wu
出处
期刊:Journal of Separation Science [Wiley]
卷期号:45 (4): 788-803 被引量:5
标识
DOI:10.1002/jssc.202100784
摘要

Fraxini Cortex has a long history of being used as a medicinal plant in traditional Chinese medicine. However, it is challenging to differentiate and make quality evaluations for Fraxini Cortex from different origins due to their similarities in morphological features, as well as general chemical composition using traditional chemical analytical methods. In this study, a simple and effective method was developed to identify Fraxini Cortex from different origins by multi-mode fingerprint combined with chemometrics. Digital images of the high-performance thin-layer chromatography profiles were converted to grayscale intensity, and the common patterns of high-performance thin-layer chromatography fingerprints were generated with ChemPattern software. Authentication and quality assessment were analyzed by similarity analysis, hierarchical cluster analysis, principal component analysis, and multivariate analysis of variance. The ultra-high-performance liquid chromatography fingerprints were analyzed by similarity analysis, principal component analysis, and orthogonal partial least square-discriminant analysis. When combined with chemometrics, high-performance thin-layer chromatography and ultra-high-performance liquid chromatography fingerprint provided a simple and effective method to evaluate the comprehensive quality of Fraxini Cortex, and to distinguish its two original medicinal materials (Fraxinus chinensis Roxb. and Fraxinus rhynchophylla Hance.) recorded in the Chinese Pharmacopeia and its three adulterants (Fraxinus mandschurica Rupr., Fraxinus pennsylvanica Marsh., and Juglans mandshurica Maxim.). A similar workflow may be applied to establish a differentiation method for other medicinal and economic plants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
一禅完成签到 ,获得积分10
1秒前
whooer完成签到,获得积分10
3秒前
4秒前
中恐发布了新的文献求助20
4秒前
淡淡菠萝完成签到 ,获得积分10
5秒前
Dxy-TOFA完成签到,获得积分10
6秒前
我我我完成签到,获得积分10
6秒前
Pineapple完成签到,获得积分10
7秒前
7秒前
猫小乐C完成签到,获得积分10
7秒前
优秀青年完成签到,获得积分10
7秒前
9秒前
活泼学生完成签到 ,获得积分10
9秒前
神马都不懂完成签到,获得积分10
11秒前
我是老大应助小白采纳,获得10
11秒前
猫小乐C发布了新的文献求助10
13秒前
634301059完成签到 ,获得积分10
13秒前
Pride完成签到 ,获得积分10
13秒前
whooer发布了新的文献求助10
14秒前
邵恒发布了新的文献求助10
15秒前
我是老大应助1477采纳,获得10
15秒前
16秒前
臭狗不能做实验完成签到,获得积分20
18秒前
莹亮的星空完成签到,获得积分10
19秒前
Singularity发布了新的文献求助10
19秒前
20秒前
21秒前
格非完成签到,获得积分10
21秒前
zhangnan完成签到,获得积分10
23秒前
zy完成签到 ,获得积分10
23秒前
Akim应助小丸子呀采纳,获得10
24秒前
科研通AI2S应助邵恒采纳,获得10
25秒前
爱睡午觉发布了新的文献求助10
25秒前
Orange应助www采纳,获得10
25秒前
潘宋完成签到,获得积分10
26秒前
杰行天下发布了新的文献求助10
27秒前
英俊的铭应助OKO采纳,获得10
28秒前
fighting完成签到,获得积分10
29秒前
小学生学免疫完成签到 ,获得积分10
29秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137238
求助须知:如何正确求助?哪些是违规求助? 2788358
关于积分的说明 7785777
捐赠科研通 2444399
什么是DOI,文献DOI怎么找? 1299897
科研通“疑难数据库(出版商)”最低求助积分说明 625650
版权声明 601023