A simple and effective method for identification of Fraxini Cortex from different sources by multi‐mode fingerprint combined with chemometrics

化学计量学 指纹(计算) 主成分分析 色谱法 线性判别分析 模式识别(心理学) 化学 人工智能 数学 计算机科学
作者
Huali Long,Yao Shuai,Wenshuai Tian,Jinjun Hou,Min Lei,Zijia Zhang,Dean Guo,Wanying Wu
出处
期刊:Journal of Separation Science [Wiley]
卷期号:45 (4): 788-803 被引量:5
标识
DOI:10.1002/jssc.202100784
摘要

Fraxini Cortex has a long history of being used as a medicinal plant in traditional Chinese medicine. However, it is challenging to differentiate and make quality evaluations for Fraxini Cortex from different origins due to their similarities in morphological features, as well as general chemical composition using traditional chemical analytical methods. In this study, a simple and effective method was developed to identify Fraxini Cortex from different origins by multi-mode fingerprint combined with chemometrics. Digital images of the high-performance thin-layer chromatography profiles were converted to grayscale intensity, and the common patterns of high-performance thin-layer chromatography fingerprints were generated with ChemPattern software. Authentication and quality assessment were analyzed by similarity analysis, hierarchical cluster analysis, principal component analysis, and multivariate analysis of variance. The ultra-high-performance liquid chromatography fingerprints were analyzed by similarity analysis, principal component analysis, and orthogonal partial least square-discriminant analysis. When combined with chemometrics, high-performance thin-layer chromatography and ultra-high-performance liquid chromatography fingerprint provided a simple and effective method to evaluate the comprehensive quality of Fraxini Cortex, and to distinguish its two original medicinal materials (Fraxinus chinensis Roxb. and Fraxinus rhynchophylla Hance.) recorded in the Chinese Pharmacopeia and its three adulterants (Fraxinus mandschurica Rupr., Fraxinus pennsylvanica Marsh., and Juglans mandshurica Maxim.). A similar workflow may be applied to establish a differentiation method for other medicinal and economic plants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
1秒前
美好乌龟完成签到 ,获得积分10
1秒前
1秒前
烟雨行舟完成签到,获得积分10
2秒前
2秒前
2秒前
搜集达人应助刘星星采纳,获得30
3秒前
赘婿应助顺利水杯采纳,获得10
3秒前
3秒前
明亮的溪灵完成签到,获得积分10
3秒前
4秒前
4秒前
充电宝应助01259采纳,获得10
4秒前
天真的莺完成签到,获得积分10
5秒前
想要赚大钱完成签到,获得积分10
5秒前
大模型应助徐慕源采纳,获得10
5秒前
格格星发布了新的文献求助10
7秒前
sunnyyty发布了新的文献求助10
8秒前
tanjianxin发布了新的文献求助10
8秒前
JIE发布了新的文献求助10
8秒前
安娜完成签到,获得积分10
8秒前
怕黑砖头发布了新的文献求助10
9秒前
科目三应助饭小心采纳,获得10
9秒前
9秒前
科研通AI2S应助花陵采纳,获得10
9秒前
善学以致用应助大吴克采纳,获得10
11秒前
老实雁蓉完成签到,获得积分10
11秒前
良辰应助zjh采纳,获得10
11秒前
yulong完成签到 ,获得积分10
12秒前
热心的早晨完成签到,获得积分10
12秒前
如此纠结完成签到,获得积分10
12秒前
多多就是小豆芽完成签到 ,获得积分10
13秒前
13秒前
Owen应助Lwxbb采纳,获得10
13秒前
不戴眼镜的眼镜王蛇完成签到,获得积分10
13秒前
小小杜完成签到,获得积分10
13秒前
初心完成签到,获得积分20
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740