亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting Treatment Selections for Individuals with Major Depressive Disorder According to Functional Connectivity Subgroups

重性抑郁障碍 心理学 心理干预 子群分析 临床心理学 干预(咨询) 功能磁共振成像 萧条(经济学) 精神科 医学 心情 内科学 荟萃分析 神经科学 宏观经济学 经济
作者
Xinyi Wang,Jiaolong Qin,Rongxin Zhu,Siqi Zhang,Shui Tian,Yurong Sun,Qiang Wang,Peng Zhao,Hao Tang,Li Wang,Tianmei Si,Zhijian Yao,Qing Lü
出处
期刊:Brain connectivity [Mary Ann Liebert]
卷期号:12 (8): 699-710 被引量:5
标识
DOI:10.1089/brain.2021.0153
摘要

Background: Major depressive disorder (MDD) is a highly prevalent and disabling disease. Currently, patients' treatment choices depend on their clinical symptoms observed by clinicians, which are subjective. Rich evidence suggests that different functional networks' dysfunctions correspond to different intervention preferences. In this study, we aimed to develop a prediction model based on data-driven subgroups to provide treatment recommendations. Methods: All 630 participants enrolled from four sites underwent functional magnetic resonances imaging at baseline. In the discovery data set (n = 228), we first identified MDD subgroups by the hierarchical clustering method using the canonical variates of resting-state functional connectivity (FC) through canonical correlation analyses. The demographic symptom improvement and FC were compared among subgroups. The preference intervention for each subgroup was also determined. Next, we predicted the individual treatment strategy. Specifically, a patient was assigned into predefined subgroups based on FC similarities and then his/her treatment strategy was determined by the subgroups' preferred interventions. Results: Three subgroups with specific treatment recommendations were emerged, including (1) a selective serotonin reuptake inhibitors-oriented subgroup with early improvements in working and activities, (2) a stimulation-oriented subgroup with more alleviation in suicide, and (3) a selective serotonin noradrenaline reuptake inhibitors-oriented subgroup with more alleviation in hypochondriasis. Through cross-dataset testing, respectively, conducted on three testing data sets, results showed an overall accuracy of 72.83%. Conclusions: Our works revealed the correspondences between subgroups and their treatment preferences and predicted individual treatment strategy based on such correspondences. Our model has the potential to support psychiatrists in early clinical decision making for better treatment outcomes. Impact statement This study proposes a novel framework to provide treatment recommendations by integrating resting-state functional connectivity and advanced machine learning technique in a large data set. Our data-driven approach is able to objectively and automatically cluster patients into different subgroups and recommends the optimal treatment strategies based on specific brain circuits and clinical symptoms. Our results have the potential to support psychiatrists in early clinical decision making for better treatment outcomes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wave8013完成签到 ,获得积分10
6秒前
8秒前
11秒前
丘比特应助神医magical采纳,获得10
17秒前
ceeray23发布了新的文献求助20
18秒前
烂漫的绿茶完成签到 ,获得积分10
25秒前
打打应助orion采纳,获得10
26秒前
51秒前
科研通AI6应助科研通管家采纳,获得10
55秒前
科研通AI6应助科研通管家采纳,获得10
55秒前
loii应助科研通管家采纳,获得200
55秒前
王王碎冰冰应助ceeray23采纳,获得20
1分钟前
小铭同学完成签到,获得积分10
1分钟前
王王碎冰冰应助ceeray23采纳,获得20
1分钟前
1分钟前
orion发布了新的文献求助10
1分钟前
传奇3应助hhhhhh采纳,获得10
1分钟前
科研通AI6应助危机的尔琴采纳,获得10
1分钟前
2分钟前
微卫星不稳定完成签到 ,获得积分0
2分钟前
量子星尘发布了新的文献求助10
2分钟前
ceeray23发布了新的文献求助20
2分钟前
2分钟前
2分钟前
2分钟前
所所应助科研通管家采纳,获得10
2分钟前
oi完成签到 ,获得积分10
3分钟前
大个应助计划采纳,获得30
3分钟前
3分钟前
胖小羊完成签到 ,获得积分10
3分钟前
NINI完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
神医magical发布了新的文献求助10
3分钟前
yishang发布了新的文献求助10
3分钟前
3分钟前
愉快的犀牛完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Bone Marrow Immunohistochemistry 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5628321
求助须知:如何正确求助?哪些是违规求助? 4716547
关于积分的说明 14964063
捐赠科研通 4786065
什么是DOI,文献DOI怎么找? 2555581
邀请新用户注册赠送积分活动 1516838
关于科研通互助平台的介绍 1477380