Mixture quantized error entropy for recursive least squares adaptive filtering

熵(时间箭头) 算法 计算机科学 高斯分布 数学 高斯函数 数学优化 人工智能 量子力学 物理
作者
Jiacheng He,Gang Wang,Bei Peng,Qing Sun,Zhenyu Feng,Kun Zhang
出处
期刊:Journal of The Franklin Institute-engineering and Applied Mathematics [Elsevier]
卷期号:359 (3): 1362-1381 被引量:13
标识
DOI:10.1016/j.jfranklin.2021.12.015
摘要

Error entropy is a well-known learning criterion in information theoretic learning (ITL), and it has been successfully applied in robust signal processing and machine learning. To date, many robust learning algorithms have been devised based on the minimum error entropy (MEE) criterion, and the Gaussian kernel function is always utilized as the default kernel function in these algorithms, which is not always the best option. To further improve learning performance, two concepts using a mixture of two Gaussian functions as kernel functions, called mixture error entropy and mixture quantized error entropy, are proposed in this paper. We further propose two new recursive least-squares algorithms based on mixture minimum error entropy (MMEE) and mixture quantized minimum error entropy (MQMEE) optimization criteria. The convergence analysis, steady-state mean-square performance, and computational complexity of the two proposed algorithms are investigated. In addition, the reason why the mixture mechanism (mixture correntropy and mixture error entropy) can improve the performance of adaptive filtering algorithms is explained. Simulation results show that the proposed new recursive least-squares algorithms outperform other RLS-type algorithms, and the practicality of the proposed algorithms is verified by the electro-encephalography application.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助年轻新儿采纳,获得10
1秒前
SciGPT应助阿玖采纳,获得10
2秒前
2秒前
3秒前
隐形曼青应助小糯采纳,获得10
3秒前
CodeCraft应助Ray羽曦~采纳,获得10
3秒前
4秒前
qiu完成签到,获得积分10
6秒前
he完成签到,获得积分10
7秒前
牢水发布了新的文献求助10
8秒前
飞飞发布了新的文献求助10
9秒前
9秒前
9秒前
ghost完成签到,获得积分10
9秒前
10秒前
10秒前
11秒前
HarbinDing完成签到,获得积分10
11秒前
汉堡包应助我爱金哥采纳,获得10
11秒前
Hello应助songyl采纳,获得10
11秒前
12秒前
12秒前
12秒前
13秒前
Jasper应助中中中中中呀采纳,获得10
13秒前
13秒前
陈开月完成签到,获得积分10
13秒前
树小夏发布了新的文献求助10
14秒前
蟹菌蚝完成签到 ,获得积分10
14秒前
14秒前
14秒前
傲娇吐司完成签到 ,获得积分20
15秒前
心碎的西瓜完成签到,获得积分10
15秒前
15秒前
星星完成签到,获得积分10
15秒前
plmm完成签到,获得积分10
16秒前
无花果应助Leon采纳,获得10
16秒前
123发布了新的文献求助10
16秒前
16秒前
seusyy完成签到,获得积分10
17秒前
高分求助中
Spray / Wall-interaction Modelling by Dimensionless Data Analysis 2000
Write Like a Chemist: A Guide and Resource (第二版) 600
Mixed-anion Compounds 600
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Earth System Geophysics 500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版 401
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3199768
求助须知:如何正确求助?哪些是违规求助? 2848897
关于积分的说明 8068542
捐赠科研通 2513243
什么是DOI,文献DOI怎么找? 1346037
科研通“疑难数据库(出版商)”最低求助积分说明 640167
邀请新用户注册赠送积分活动 609877