Mixture quantized error entropy for recursive least squares adaptive filtering

熵(时间箭头) 算法 计算机科学 高斯分布 数学 高斯函数 数学优化 人工智能 量子力学 物理
作者
Jiacheng He,Gang Wang,Bei Peng,Qing Sun,Zhenyu Feng,Kun Zhang
出处
期刊:Journal of The Franklin Institute-engineering and Applied Mathematics [Elsevier]
卷期号:359 (3): 1362-1381 被引量:13
标识
DOI:10.1016/j.jfranklin.2021.12.015
摘要

Error entropy is a well-known learning criterion in information theoretic learning (ITL), and it has been successfully applied in robust signal processing and machine learning. To date, many robust learning algorithms have been devised based on the minimum error entropy (MEE) criterion, and the Gaussian kernel function is always utilized as the default kernel function in these algorithms, which is not always the best option. To further improve learning performance, two concepts using a mixture of two Gaussian functions as kernel functions, called mixture error entropy and mixture quantized error entropy, are proposed in this paper. We further propose two new recursive least-squares algorithms based on mixture minimum error entropy (MMEE) and mixture quantized minimum error entropy (MQMEE) optimization criteria. The convergence analysis, steady-state mean-square performance, and computational complexity of the two proposed algorithms are investigated. In addition, the reason why the mixture mechanism (mixture correntropy and mixture error entropy) can improve the performance of adaptive filtering algorithms is explained. Simulation results show that the proposed new recursive least-squares algorithms outperform other RLS-type algorithms, and the practicality of the proposed algorithms is verified by the electro-encephalography application.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助第三采纳,获得10
刚刚
刚刚
Yana__Chan完成签到 ,获得积分10
1秒前
JYX发布了新的文献求助10
1秒前
wanci应助椰子采纳,获得10
4秒前
无花果应助明亮的泥猴桃采纳,获得10
7秒前
8秒前
忧心的荧荧完成签到,获得积分10
9秒前
zhangyidian应助543采纳,获得10
10秒前
10秒前
lilil发布了新的文献求助10
11秒前
d99关闭了d99文献求助
12秒前
13秒前
蓬蒿人完成签到,获得积分10
13秒前
科目三应助科研通管家采纳,获得10
13秒前
领导范儿应助科研通管家采纳,获得10
13秒前
852应助科研通管家采纳,获得10
13秒前
嗯哼应助科研通管家采纳,获得10
14秒前
Hello应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
断绝的发布了新的文献求助30
15秒前
17秒前
万能图书馆应助洁净白容采纳,获得10
19秒前
19秒前
电子发布了新的文献求助10
19秒前
19秒前
momo完成签到,获得积分10
20秒前
20秒前
20秒前
21秒前
饱满丹亦发布了新的文献求助10
21秒前
21秒前
Wayne完成签到,获得积分10
21秒前
彭于晏完成签到,获得积分10
22秒前
一一应助yillin采纳,获得10
22秒前
tgd发布了新的文献求助10
22秒前
阿秋发布了新的文献求助10
23秒前
23秒前
铁路桥应助Youtenter采纳,获得20
24秒前
高分求助中
Spray / Wall-interaction Modelling by Dimensionless Data Analysis 2000
Write Like a Chemist: A Guide and Resource (第二版) 600
Mixed-anion Compounds 600
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Earth System Geophysics 500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版 401
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3199603
求助须知:如何正确求助?哪些是违规求助? 2848386
关于积分的说明 8067867
捐赠科研通 2513108
什么是DOI,文献DOI怎么找? 1345616
科研通“疑难数据库(出版商)”最低求助积分说明 640058
邀请新用户注册赠送积分活动 609771