Super Electrical Insulating Materials Based on Honeycomb‐Inspired Nanostructure: High Electrical Strength and Low Permittivity and Dielectric Loss

材料科学 电介质 复合材料 介电强度 介电常数 倍半硅氧烷 电气故障 电场 纳米孔 场强 纳米结构 光电子学 纳米技术 聚合物 磁场 物理 量子力学
作者
Potao Sun,Chuang Li,Wenxia Sima,Tao Yuan,Ming Yang,Yongqing Chen
出处
期刊:Advanced electronic materials [Wiley]
卷期号:8 (4) 被引量:10
标识
DOI:10.1002/aelm.202100979
摘要

Abstract The high breakdown field strength is the most important index to evaluate the performance of insulating materials. It is theoretically found that the breakdown field strength of dielectric samples can be significantly improved by up to 1–2 orders of magnitude by constructing nanopore structures. Thus, bridged silsesquioxane super electrical insulating materials (BSSEIM) are developed with nanosized pore structures and their extremely high electrical insulation performance is realized. The results indicate that the breakdown field strength of the BSSEIM is dramatically higher than aluminosilicate fiber insulating materials (ASFIM) by 570.5% for dry samples and 118.1% for oil‐impregnated samples. Specifically, the prepared BSSEIM samples have excellent dielectric performances with permittivity and dielectric losses that are only 51.3% and 1.1% of ASFIM, which are significantly lower than most existing insulating materials. Finally, the theoretical analysis indicates that the nanopore structures can effectively limit the scale of the head size for an electron avalanche and significantly reduce the number of effective gas molecules by dividing the gas into nanounits. This significantly inhibits the ionization of gas molecules and improves the breakdown field strength of samples. This discovery overturns previous understandings of traditional insulating materials and opens an avenue toward super electrical insulating materials.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zjrh发布了新的文献求助10
刚刚
郝富完成签到,获得积分10
1秒前
ericzhouxx完成签到,获得积分10
1秒前
doctor小陈完成签到,获得积分10
2秒前
倩倩发布了新的文献求助10
4秒前
受伤鸡发布了新的文献求助10
5秒前
坚果完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
jesmblaq发布了新的文献求助10
6秒前
AAngelica完成签到,获得积分10
6秒前
ElviraHuang完成签到 ,获得积分10
8秒前
8秒前
李昕123发布了新的文献求助10
10秒前
10秒前
11秒前
Canyon完成签到,获得积分10
12秒前
刘l完成签到,获得积分10
12秒前
9699完成签到,获得积分20
13秒前
13秒前
13秒前
13秒前
13秒前
13秒前
破碎时间完成签到 ,获得积分10
14秒前
14秒前
14秒前
orixero应助忐忑的不可采纳,获得10
15秒前
科研通AI2S应助zhouyan采纳,获得10
15秒前
16秒前
蔡勇强发布了新的文献求助10
16秒前
小虫虫完成签到,获得积分10
16秒前
饼饼大王完成签到,获得积分10
16秒前
13013523252完成签到,获得积分10
16秒前
18秒前
hy发布了新的文献求助10
18秒前
科研通AI6应助tph采纳,获得10
19秒前
jesmblaq完成签到,获得积分10
20秒前
文静的夜阑完成签到,获得积分20
20秒前
20秒前
量子星尘发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646330
求助须知:如何正确求助?哪些是违规求助? 4770916
关于积分的说明 15034350
捐赠科研通 4805112
什么是DOI,文献DOI怎么找? 2569392
邀请新用户注册赠送积分活动 1526467
关于科研通互助平台的介绍 1485812