膦酸盐
化学
磷酸盐
无机化学
催化作用
氧化还原
过氧化氢
核化学
有机化学
作者
Shuhui Sun,Chao Shan,Zhichao Yang,Shu Wang,Bingcai Pan
标识
DOI:10.1021/acs.est.1c06471
摘要
Phosphonate is an important category of highly soluble organophosphorus in contaminated waters, and its oxidative transformation into phosphate is usually a prerequisite step to achieve the in-depth removal of the total phosphorus. Currently, selective oxidation of phosphonate into phosphate is urgently desired as conventional advanced oxidation processes suffer from severe matrix interferences. Herein, we employed 1-hydroxyethylidene-1,1-diphosphonic acid (HEDP) as a model phosphonate and demonstrated its efficient and selective oxidation by the Cu(II)/H2O2 process at alkaline pH. In the presence of trace Cu(II) (0.020 mM), 90.8% of HEDP (0.10 mM) was converted to phosphate by H2O2 in 30 min at pH 9.5, whereas negligible conversion was observed by UV/H2O2 or a Fenton reaction (pH = 3.0). The oxidation of HEDP by Cu(II)/H2O2 was insignificantly affected by natural organic matters (10.0 mg TOC/L) and various anions including chloride, sulfate, and nitrate (10.0 mM). The complexation of Cu(II) with HEDP coupling Cu(III) produced in situ enabled an intramolecular electron transfer process, which features high selective oxidation. Selective degradation of HEDP was further validated by adding stoichiometric H2O2 into an industrial effluent, where the existing Cu(II) could serve as the catalyst. This study also provides a successful case to trigger selective oxidation of trace pollutants of concern upon synergizing with the nature of the contaminated water.
科研通智能强力驱动
Strongly Powered by AbleSci AI