Emotion classification and language characteristics analysis of "fans community" based on NLP

谣言 计算机科学 人工智能 自然语言处理 构造(python库) 名词 词(群论) 语言学 政治学 公共关系 哲学 程序设计语言
作者
Xiaomei Sun,Fan Yongsheng
标识
DOI:10.1117/12.2624725
摘要

As abuse and malicious rumor often occur in the " fans community ", which has an extremely bad impact on the society, we need to study the emotional tendency of the comment language of the " fans community " in the network, so as to identify the "loyal fans" and "black fans" and explore the language characteristics of the two types of fans. In this paper, more than 50,000 comments were extracted from common Chinese websites, and some data were pre-processed and manually annotated to construct a Chinese "fans community" comment dataset. The three supervised algorithms and one unsupervised algorithm for" fans community ". Emotional dictionary method are used to classify the " fans community " comment information. Then it is analyzed such as the content of the two types of fans comments in terms of sentences, word count, words, and so on. The experimental results show that all the methods adopted in this paper can effectively classify the comments of "loyal fans" and "black fans" by emotion dichotomy. In terms of language characteristics, the comments of "loyal fans" are characterized by multiple nouns, long sentences and regular comment time. "Black fans" comments are often verbs, short sentences and random comments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助yang采纳,获得10
刚刚
kk完成签到,获得积分10
刚刚
1秒前
Melody发布了新的文献求助10
2秒前
2秒前
p浣完成签到,获得积分10
2秒前
青天鸟1989发布了新的文献求助10
3秒前
阿T发布了新的文献求助10
6秒前
8秒前
minmin完成签到,获得积分10
8秒前
p浣发布了新的文献求助10
8秒前
温婉的惜文完成签到 ,获得积分10
10秒前
13秒前
暗袍发布了新的文献求助10
13秒前
科研通AI2S应助马上毕业采纳,获得10
16秒前
披萨红应助茶博士采纳,获得10
16秒前
18秒前
20秒前
在水一方应助柠檬味的水采纳,获得10
20秒前
23秒前
小席发布了新的文献求助10
23秒前
youchao发布了新的文献求助10
23秒前
99giddens给99giddens的求助进行了留言
25秒前
温暖涫发布了新的文献求助30
29秒前
CodeCraft应助吃了当归采纳,获得10
29秒前
29秒前
Melody完成签到,获得积分10
30秒前
32秒前
Li完成签到,获得积分10
34秒前
Miao完成签到,获得积分10
34秒前
35秒前
刻苦丝袜发布了新的文献求助10
36秒前
小席完成签到,获得积分10
37秒前
媛媛发布了新的文献求助10
38秒前
40秒前
40秒前
研友_Z7XY28发布了新的文献求助10
45秒前
wyr发布了新的文献求助10
45秒前
小二郎应助可靠的书本采纳,获得10
46秒前
阿伟完成签到,获得积分10
51秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
Data Structures and Algorithms in Java 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3268244
求助须知:如何正确求助?哪些是违规求助? 2907783
关于积分的说明 8343269
捐赠科研通 2578150
什么是DOI,文献DOI怎么找? 1401716
科研通“疑难数据库(出版商)”最低求助积分说明 655160
邀请新用户注册赠送积分活动 634266