Optimizing Graph Neural Network With Multiaspect Hilbert-Schmidt Independence Criterion

计算机科学 嵌入 代码本 图形 节点(物理) 理论计算机科学 算法 人工智能 工程类 结构工程
作者
Yurong He,Dengcheng Yan,Wei Xie,Yiwen Zhang,Qing He,Yun Yang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:1
标识
DOI:10.1109/tnnls.2022.3171419
摘要

The graph neural network (GNN) has demonstrated its superior power in various data mining tasks and has been widely applied in diversified fields. The core of GNN is the aggregation and combination functions, and mainstream GNN studies focus on the enhancement of these functions. However, GNNs face a common challenge, i.e., useless features contained in neighbor nodes may be integrated into the target node during the aggregation process. This leads to poor node embedding and undermines downstream tasks. To tackle this problem, this article proposes a novel GNN optimization framework GNN-MHSIC by introducing the nonparametric dependence method Hilbert-Schmidt independence criterion (HSIC) under the guidance of information bottleneck. HSIC is utilized to guide the information propagation among layers of a GNN from multiaspect views. GNN-MHSIC aims to achieve three main objectives: 1) minimizing the HSIC between the input features and the propagation layers; 2) maximizing the HSIC between the propagation layers and the ground truth; and 3) minimizing the HSIC between the propagation layers. With a multiaspect design, GNN-MHSIC can minimize the propagation of redundant information while preserving relevant information about the target node. We prove GNN-MHSIC's finite upper and lower bounds theoretically and evaluate it experimentally with four classic GNN models, including the graph convolutional network, the graph attention network (GAT), the heterogeneous GAT, and the heterogeneous graph (HG) propagation network on three widely used HGs. The results illustrate the usefulness and performance of GNN-MHSIC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ybb完成签到,获得积分10
3秒前
3秒前
快乐的伟诚完成签到,获得积分10
5秒前
搜集达人应助大胆夜绿采纳,获得10
5秒前
5秒前
6秒前
辛勤的无血完成签到,获得积分10
9秒前
10秒前
rookie完成签到,获得积分10
10秒前
10秒前
ni完成签到,获得积分10
11秒前
step_stone给step_stone的求助进行了留言
12秒前
12秒前
荒野星辰发布了新的文献求助10
13秒前
敏感的芷完成签到,获得积分20
13秒前
15秒前
15秒前
16秒前
luoshi应助沐风采纳,获得20
16秒前
安南完成签到,获得积分10
16秒前
香蕉冬云完成签到 ,获得积分10
17秒前
自信安荷发布了新的文献求助200
17秒前
鱼雷发布了新的文献求助10
18秒前
兔子发布了新的文献求助10
18秒前
18秒前
田様应助coffee采纳,获得10
19秒前
19秒前
专注鼠标完成签到,获得积分10
19秒前
LingYing完成签到 ,获得积分10
20秒前
cheche完成签到,获得积分10
21秒前
liushun完成签到,获得积分10
21秒前
caoyy发布了新的文献求助10
21秒前
zzt发布了新的文献求助10
22秒前
24秒前
24秒前
章家炜发布了新的文献求助10
25秒前
脑洞疼应助xfxx采纳,获得10
25秒前
wanci应助茶博士采纳,获得10
25秒前
所所应助YYT采纳,获得10
26秒前
匿名网友完成签到 ,获得积分10
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824