生物膜
表皮葡萄球菌
光敏剂
伤口愈合
体内
微生物学
抗菌剂
生物相容性
光动力疗法
细菌
化学
细胞毒性
原卟啉IX
金黄色葡萄球菌
体外
生物
生物化学
免疫学
生物技术
遗传学
有机化学
作者
Yan Chen,Min Zhang,Likai Chen,Mengmeng Pan,Mingming Qin,Yanqiu Guo,Yaobo Zhang,Hao Pan,Yunlong Zhou
出处
期刊:Nanoscale
[The Royal Society of Chemistry]
日期:2022-01-01
卷期号:14 (21): 7837-7848
被引量:4
摘要
Antimicrobial materials have been developed to combat bacteria more effectively and promote infected wound healing. However, it is widely recognized that the potential toxic effects and complexity of the synthesis process hinder their practical applications. In this work, we introduced a strategy for fighting bacteria and promoting wound healing caused by Staphylococcus epidermidis (S. epidermidis) infection by the self-combination of Zn2+ and clinically applied 5-aminolevulinic acid hydrochloride (ALA) in the microbes. The clinical ALA could target and accumulate in the biofilm as well as contribute to the low-dose Zn2+ penetrating the biofilm due to the self-organized formation of Zn protoporphyrin IX in situ. Upon exposing to a 635 nm laser, the self-combination of ALA and Zn2+ significantly inhibited and eliminated the S. epidermidis biofilm via a synergistic biofilm eradication mechanism that enhanced photodynamic inactivation and aggravated cell wall/membrane disruption. In addition, the combination of ALA and Zn2+ could accelerate wound repair and reduce inflammatory response without causing cytotoxicity. The proposed strategy in this study illustrates the clinical prospects of eradicating biofilms and repairing infected wounds and demonstrates good biocompatibility towards infectious diseases.
科研通智能强力驱动
Strongly Powered by AbleSci AI