Automatic Recognition of Faults in Mining Areas Based on Convolutional Neural Network

卷积神经网络 断层(地质) 煤矿开采 口译(哲学) 特征(语言学) 人工智能 人工神经网络 鉴定(生物学) 计算机科学 培训(气象学) 数据挖掘 模式识别(心理学) 机器学习 工程类 地震学 地质学 哲学 气象学 物理 程序设计语言 生物 废物管理 植物 语言学
作者
Guangui Zou,Lin Zhang,Ke Ren,Bowen Deng,Jingwen Xue
出处
期刊:Energies [MDPI AG]
卷期号:15 (10): 3758-3758 被引量:8
标识
DOI:10.3390/en15103758
摘要

Tectonic interpretation is critical to a coal mine’s safe production, and fault interpretation is an essential component of seismic tectonic interpretation. With the increasing necessity for accuracy in fault interpretation in coal mines, it is increasingly challenging to achieve greater accuracy only through traditional fault interpretation. The convolutional neural network (CNN) is a machine learning method established in recent years and it has been widely applied in coal mine fault interpretation because of its powerful feature-learning and classification capabilities. To improve the accuracy and efficiency of fault interpretation in coal mines, an automatic seismic fault identification method based on the convolutional neural network has been developed. Taking a mining area in eastern Yunnan province as an example, the CNN model realized automatic identification of faults with eight seismic attributes as feature inputs, and the model-training parameters were optimized and compared. Ten faults in the area were selected to analyze the prediction effect, and a comparative experiment was done with model structure parameters and training sets. The experimental results indicate that the training parameters have a significant influence on the training time and testing accuracy of the model, while structural parameters and training sets affect the actual prediction effect of the model. By comparison, the fault results predicted by the convolutional neural network are in good agreement with the manual interpretation, and the accuracy of the model is more than 85%, which proves that this method has certain feasibility and provides a new way to shorten the fault interpretation period and improve the interpretation accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助张恒采纳,获得10
刚刚
务实青筠完成签到 ,获得积分10
1秒前
可爱的函函应助Cryo采纳,获得10
1秒前
2秒前
爱撒娇的书翠完成签到,获得积分10
3秒前
kk完成签到,获得积分10
3秒前
liourg发布了新的文献求助10
4秒前
zho关闭了zho文献求助
4秒前
劲秉应助曹伟采纳,获得30
4秒前
天天快乐应助LXR采纳,获得10
5秒前
paddi完成签到,获得积分10
5秒前
6秒前
Ava应助H-China采纳,获得10
8秒前
11秒前
周易完成签到,获得积分10
12秒前
zho发布了新的文献求助10
13秒前
14秒前
Ohoooo完成签到,获得积分10
15秒前
张恒完成签到,获得积分10
15秒前
Qingyong21发布了新的文献求助10
15秒前
Xiaoma发布了新的文献求助10
16秒前
16秒前
Livrik发布了新的文献求助10
16秒前
张恒发布了新的文献求助10
19秒前
amazing39完成签到,获得积分10
20秒前
20秒前
21秒前
坚强的哈密瓜完成签到,获得积分10
23秒前
Cryo发布了新的文献求助10
26秒前
谦让的凝阳完成签到,获得积分10
27秒前
27秒前
小二郎应助科研进化中采纳,获得10
28秒前
繁星完成签到,获得积分10
28秒前
30秒前
宇航员完成签到,获得积分10
30秒前
30秒前
劲秉应助Mr.Jian采纳,获得20
31秒前
32秒前
33秒前
34秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 570
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3465498
求助须知:如何正确求助?哪些是违规求助? 3058667
关于积分的说明 9062534
捐赠科研通 2748998
什么是DOI,文献DOI怎么找? 1508231
科研通“疑难数据库(出版商)”最低求助积分说明 696880
邀请新用户注册赠送积分活动 696535