Comparing classical and metaheuristic methods to optimize multi-objective operation planning of district energy systems considering uncertainties

解算器 数学优化 元启发式 分类 计算机科学 可再生能源 软件 遗传算法 多目标优化
作者
Zahra Ghaemi,Thomas T.D. Tran,Amanda D. Smith
出处
期刊:Applied Energy [Elsevier BV]
卷期号:321: 119400-119400
标识
DOI:10.1016/j.apenergy.2022.119400
摘要

District energy systems (DES) can reduce CO 2 emissions associated with buildings while meeting the energy needs of a group of buildings with fossil fuel or renewable energy resources that are located on-site. One of the present challenges of DES is optimizing the operation of energy components, as different optimization methods are available. These optimization methods can have various requirements for implementation, distinct needs for engineering labor, and may rely on freely accessible software or proprietary software. Most importantly, different methods may result in dissimilar operation planning for a given DES, which makes the selection of optimization method a key consideration for decision-makers. In this study, two optimization methods, a mixed-integer linear programming (MILP) solver as a classical method and a non-dominated sorting genetic algorithm II (NSGA-II) as a metaheuristic method, are used to optimize the early-stage operation planning of a hypothetical DES for a university campus in a cool and dry climate. The objective is to minimize the operating cost and CO 2 emissions when considering uncertainties in energy demands, solar irradiance, wind speed, and annualized electricity-related emissions. Both methods present similar operation of energy components, operating cost, and operating CO 2 emissions. The MILP solver and NSGA-II algorithm vary in computation time to perform the optimization, initial knowledge to run the simulation, accessibility (free/open-source status), and satisfaction of constraints. This work compares the characteristics of a MILP solver and NSGA-II algorithm to help future researchers select the suitable optimization method related to their case study. The software underlying this work is open-source and publicly available to be reused and customized for early-stage operation planning of their specific DES. This work is novel by optimizing the operation planning of a mixed-used DES to minimize the cost and CO 2 emissions while considering uncertainties in weather parameters, energy demands, and annualized electricity-related emissions. • Multi-objective optimization of district energy system performed by MILP and NSGA-II. • Uncertainties in energy demands, meteorology, and emissions are considered. • Results of operation planning are similar between MILP and NSGA-II. • Highly variable renewable sources do not cause high variability in cost or emissions. • An open source framework is presented to help optimize district energy systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
褚香旋完成签到,获得积分10
2秒前
一只狗东西完成签到 ,获得积分10
4秒前
宇老师发布了新的文献求助10
5秒前
6秒前
qiqi发布了新的文献求助30
8秒前
大橙子发布了新的文献求助10
11秒前
wzhang完成签到,获得积分10
12秒前
ken131完成签到 ,获得积分10
15秒前
myl完成签到,获得积分10
16秒前
728完成签到,获得积分10
22秒前
xiaofeng5838完成签到,获得积分10
22秒前
ronnie完成签到,获得积分10
22秒前
25秒前
寒冷芷蕊完成签到,获得积分20
25秒前
25秒前
Jane完成签到,获得积分10
25秒前
一氧化二氢完成签到,获得积分10
31秒前
凡事发生必有利于我完成签到,获得积分10
32秒前
yihaiqin完成签到 ,获得积分10
36秒前
轩辕剑身完成签到,获得积分0
36秒前
coolkid完成签到 ,获得积分0
37秒前
你怎么那么美完成签到,获得积分10
37秒前
游艺完成签到 ,获得积分10
40秒前
冬月完成签到 ,获得积分10
40秒前
薛乎虚完成签到 ,获得积分10
41秒前
42秒前
大胖完成签到,获得积分10
42秒前
野火197完成签到,获得积分10
46秒前
47秒前
量子星尘发布了新的文献求助10
50秒前
April完成签到,获得积分10
50秒前
周舟完成签到 ,获得积分10
53秒前
V_I_G完成签到 ,获得积分10
54秒前
nick完成签到,获得积分10
55秒前
高高高完成签到 ,获得积分10
58秒前
彪壮的亦瑶完成签到 ,获得积分10
59秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
Perry应助科研通管家采纳,获得60
1分钟前
Akim应助科研通管家采纳,获得10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038157
求助须知:如何正确求助?哪些是违规求助? 3575869
关于积分的说明 11373842
捐赠科研通 3305650
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022