已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Comparing classical and metaheuristic methods to optimize multi-objective operation planning of district energy systems considering uncertainties

解算器 数学优化 元启发式 分类 计算机科学 可再生能源 软件 遗传算法 多目标优化
作者
Zahra Ghaemi,Thomas T.D. Tran,Amanda D. Smith
出处
期刊:Applied Energy [Elsevier]
卷期号:321: 119400-119400
标识
DOI:10.1016/j.apenergy.2022.119400
摘要

District energy systems (DES) can reduce CO 2 emissions associated with buildings while meeting the energy needs of a group of buildings with fossil fuel or renewable energy resources that are located on-site. One of the present challenges of DES is optimizing the operation of energy components, as different optimization methods are available. These optimization methods can have various requirements for implementation, distinct needs for engineering labor, and may rely on freely accessible software or proprietary software. Most importantly, different methods may result in dissimilar operation planning for a given DES, which makes the selection of optimization method a key consideration for decision-makers. In this study, two optimization methods, a mixed-integer linear programming (MILP) solver as a classical method and a non-dominated sorting genetic algorithm II (NSGA-II) as a metaheuristic method, are used to optimize the early-stage operation planning of a hypothetical DES for a university campus in a cool and dry climate. The objective is to minimize the operating cost and CO 2 emissions when considering uncertainties in energy demands, solar irradiance, wind speed, and annualized electricity-related emissions. Both methods present similar operation of energy components, operating cost, and operating CO 2 emissions. The MILP solver and NSGA-II algorithm vary in computation time to perform the optimization, initial knowledge to run the simulation, accessibility (free/open-source status), and satisfaction of constraints. This work compares the characteristics of a MILP solver and NSGA-II algorithm to help future researchers select the suitable optimization method related to their case study. The software underlying this work is open-source and publicly available to be reused and customized for early-stage operation planning of their specific DES. This work is novel by optimizing the operation planning of a mixed-used DES to minimize the cost and CO 2 emissions while considering uncertainties in weather parameters, energy demands, and annualized electricity-related emissions. • Multi-objective optimization of district energy system performed by MILP and NSGA-II. • Uncertainties in energy demands, meteorology, and emissions are considered. • Results of operation planning are similar between MILP and NSGA-II. • Highly variable renewable sources do not cause high variability in cost or emissions. • An open source framework is presented to help optimize district energy systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打工人不酷完成签到 ,获得积分10
6秒前
潇潇完成签到 ,获得积分10
9秒前
寂寞的芷珊完成签到,获得积分20
11秒前
农夫完成签到,获得积分10
11秒前
少年完成签到,获得积分10
14秒前
16秒前
英俊的铭应助寂寞的芷珊采纳,获得10
16秒前
李健的小迷弟应助阿mu采纳,获得10
18秒前
19秒前
百浪多息发布了新的文献求助10
22秒前
小赞芽完成签到,获得积分10
23秒前
李健的小迷弟应助dd采纳,获得10
24秒前
斯文败类应助听风采纳,获得10
24秒前
25秒前
27秒前
27秒前
米花完成签到 ,获得积分10
29秒前
彭雄武发布了新的文献求助10
31秒前
怕黑的文具完成签到,获得积分10
32秒前
璨澄完成签到 ,获得积分10
32秒前
明明发布了新的文献求助10
33秒前
可爱的函函应助直率健柏采纳,获得30
35秒前
35秒前
骆凤灵完成签到 ,获得积分10
37秒前
圆圆完成签到 ,获得积分10
37秒前
完美世界应助百浪多息采纳,获得10
39秒前
NexusExplorer应助百浪多息采纳,获得10
39秒前
香蕉觅云应助彭雄武采纳,获得10
39秒前
飞快的孱完成签到,获得积分10
39秒前
善学以致用应助明明采纳,获得10
41秒前
hehehe完成签到,获得积分10
46秒前
时尚问安完成签到 ,获得积分10
51秒前
51秒前
56秒前
56秒前
研友_VZG7GZ应助科研通管家采纳,获得10
56秒前
SciGPT应助科研通管家采纳,获得10
56秒前
所所应助科研通管家采纳,获得10
56秒前
dd发布了新的文献求助10
56秒前
57秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136964
求助须知:如何正确求助?哪些是违规求助? 2787896
关于积分的说明 7783885
捐赠科研通 2443962
什么是DOI,文献DOI怎么找? 1299536
科研通“疑难数据库(出版商)”最低求助积分说明 625477
版权声明 600954