Graph-in-Graph Convolutional Network for Hyperspectral Image Classification

计算机科学 模式识别(心理学) 图形 人工智能 高光谱成像 理论计算机科学
作者
Sen Jia,Shuguo Jiang,Shuyu Zhang,Meng Xu,Xiuping Jia
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (1): 1157-1171 被引量:71
标识
DOI:10.1109/tnnls.2022.3182715
摘要

With the development of hyperspectral sensors, accessible hyperspectral images (HSIs) are increasing, and pixel-oriented classification has attracted much attention. Recently, graph convolutional networks (GCNs) have been proposed to process graph-structured data in non-Euclidean domains and have been employed in HSI classification. But most methods based on GCN are hard to sufficiently exploit information of ground objects due to feature aggregation. To solve this issue, in this article, we proposed a graph-in-graph (GiG) model and a related GiG convolutional network (GiGCN) for HSI classification from a superpixel viewpoint. The GiG representation covers information inside and outside superpixels, respectively, corresponding to the local and global characteristics of ground objects. Concretely, after segmenting HSI into disjoint superpixels, each one is converted to an internal graph. Meanwhile, an external graph is constructed according to the spatial adjacent relationships among superpixels. Significantly, each node in the external graph embeds a corresponding internal graph, forming the so-called GiG structure. Then, GiGCN composed of internal and External graph convolution (EGC) is designed to extract hierarchical features and integrate them into multiple scales, improving the discriminability of GiGCN. Ensemble learning is incorporated to further boost the robustness of GiGCN. It is worth noting that we are the first to propose the GiG framework from the superpixel point and the GiGCN scheme for HSI classification. Experiment results on four benchmark datasets demonstrate that our proposed method is effective and feasible for HSI classification with limited labeled samples. For study replication, the code developed for this study is available at https://github.com/ShuGuoJ/GiGCN.git .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
在水一方应助kk采纳,获得10
2秒前
2秒前
yuki完成签到,获得积分10
3秒前
5秒前
讨厌水煮蛋应助王九八采纳,获得50
7秒前
zzzzzzzz应助liuzengzhang666采纳,获得10
7秒前
8秒前
Bob完成签到,获得积分10
9秒前
白立轩发布了新的文献求助10
10秒前
药药完成签到,获得积分10
11秒前
诚心雨琴发布了新的文献求助10
13秒前
独特凡松完成签到,获得积分10
13秒前
DT完成签到 ,获得积分10
15秒前
16秒前
lv完成签到,获得积分10
16秒前
18秒前
若俗人发布了新的文献求助10
18秒前
19秒前
欣喜沛芹发布了新的文献求助10
21秒前
mashichuang发布了新的文献求助10
21秒前
22秒前
喜悦的莹发布了新的文献求助10
23秒前
852应助firefox采纳,获得10
24秒前
hu完成签到,获得积分20
24秒前
滕永杰发布了新的文献求助10
24秒前
无花折枝完成签到,获得积分10
26秒前
白立轩完成签到,获得积分10
26秒前
丘比特应助Youatpome采纳,获得10
27秒前
27秒前
NexusExplorer应助冷傲凝琴采纳,获得10
27秒前
DT发布了新的文献求助10
27秒前
popcorn完成签到,获得积分10
27秒前
30秒前
打打应助俭朴的碧玉采纳,获得10
30秒前
零知识完成签到 ,获得积分10
30秒前
lemon完成签到,获得积分10
34秒前
Hello应助随缘采纳,获得10
35秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
Indomethacinのヒトにおける経皮吸収 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3997687
求助须知:如何正确求助?哪些是违规求助? 3537226
关于积分的说明 11271044
捐赠科研通 3276377
什么是DOI,文献DOI怎么找? 1806965
邀请新用户注册赠送积分活动 883609
科研通“疑难数据库(出版商)”最低求助积分说明 809975