Graph-in-Graph Convolutional Network for Hyperspectral Image Classification

计算机科学 模式识别(心理学) 图形 人工智能 高光谱成像 卷积神经网络 理论计算机科学
作者
Sen Jia,Shuguo Jiang,Shuyu Zhang,Meng Xu,Xiuping Jia
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (1): 1157-1171 被引量:48
标识
DOI:10.1109/tnnls.2022.3182715
摘要

With the development of hyperspectral sensors, accessible hyperspectral images (HSIs) are increasing, and pixel-oriented classification has attracted much attention. Recently, graph convolutional networks (GCNs) have been proposed to process graph-structured data in non-Euclidean domains and have been employed in HSI classification. But most methods based on GCN are hard to sufficiently exploit information of ground objects due to feature aggregation. To solve this issue, in this article, we proposed a graph-in-graph (GiG) model and a related GiG convolutional network (GiGCN) for HSI classification from a superpixel viewpoint. The GiG representation covers information inside and outside superpixels, respectively, corresponding to the local and global characteristics of ground objects. Concretely, after segmenting HSI into disjoint superpixels, each one is converted to an internal graph. Meanwhile, an external graph is constructed according to the spatial adjacent relationships among superpixels. Significantly, each node in the external graph embeds a corresponding internal graph, forming the so-called GiG structure. Then, GiGCN composed of internal and External graph convolution (EGC) is designed to extract hierarchical features and integrate them into multiple scales, improving the discriminability of GiGCN. Ensemble learning is incorporated to further boost the robustness of GiGCN. It is worth noting that we are the first to propose the GiG framework from the superpixel point and the GiGCN scheme for HSI classification. Experiment results on four benchmark datasets demonstrate that our proposed method is effective and feasible for HSI classification with limited labeled samples. For study replication, the code developed for this study is available at https://github.com/ShuGuoJ/GiGCN.git.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
meta发布了新的文献求助10
2秒前
3秒前
3秒前
丘比特应助紫藤采纳,获得10
3秒前
Yimi发布了新的文献求助10
4秒前
5秒前
苏满天发布了新的文献求助10
6秒前
清爽的莹完成签到,获得积分20
7秒前
zzz发布了新的文献求助10
8秒前
帅气的盼芙完成签到,获得积分20
9秒前
大方明杰发布了新的文献求助10
10秒前
10秒前
13秒前
欢呼小蚂蚁关注了科研通微信公众号
14秒前
wlb发布了新的文献求助10
16秒前
九九发布了新的文献求助10
16秒前
17秒前
佳丽发布了新的文献求助10
17秒前
18秒前
19秒前
外卖到了完成签到 ,获得积分10
20秒前
光先生发布了新的文献求助30
22秒前
26秒前
27秒前
34882738发布了新的文献求助10
29秒前
Zz完成签到,获得积分10
29秒前
李健的小迷弟应助LHD采纳,获得10
31秒前
32秒前
wllllll发布了新的文献求助10
32秒前
yg完成签到,获得积分10
33秒前
科研通AI2S应助fy采纳,获得10
37秒前
37秒前
yg发布了新的文献求助10
38秒前
领导范儿应助Zz采纳,获得10
39秒前
大方明杰发布了新的文献求助10
39秒前
orange-study发布了新的文献求助10
41秒前
meta完成签到,获得积分10
41秒前
fu完成签到,获得积分10
42秒前
TYMX发布了新的文献求助10
43秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161216
求助须知:如何正确求助?哪些是违规求助? 2812642
关于积分的说明 7895839
捐赠科研通 2471437
什么是DOI,文献DOI怎么找? 1316030
科研通“疑难数据库(出版商)”最低求助积分说明 631074
版权声明 602112