亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Graph-in-Graph Convolutional Network for Hyperspectral Image Classification

计算机科学 模式识别(心理学) 图形 人工智能 高光谱成像 理论计算机科学
作者
Sen Jia,Shuguo Jiang,Shuyu Zhang,Meng Xu,Xiuping Jia
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (1): 1157-1171 被引量:81
标识
DOI:10.1109/tnnls.2022.3182715
摘要

With the development of hyperspectral sensors, accessible hyperspectral images (HSIs) are increasing, and pixel-oriented classification has attracted much attention. Recently, graph convolutional networks (GCNs) have been proposed to process graph-structured data in non-Euclidean domains and have been employed in HSI classification. But most methods based on GCN are hard to sufficiently exploit information of ground objects due to feature aggregation. To solve this issue, in this article, we proposed a graph-in-graph (GiG) model and a related GiG convolutional network (GiGCN) for HSI classification from a superpixel viewpoint. The GiG representation covers information inside and outside superpixels, respectively, corresponding to the local and global characteristics of ground objects. Concretely, after segmenting HSI into disjoint superpixels, each one is converted to an internal graph. Meanwhile, an external graph is constructed according to the spatial adjacent relationships among superpixels. Significantly, each node in the external graph embeds a corresponding internal graph, forming the so-called GiG structure. Then, GiGCN composed of internal and External graph convolution (EGC) is designed to extract hierarchical features and integrate them into multiple scales, improving the discriminability of GiGCN. Ensemble learning is incorporated to further boost the robustness of GiGCN. It is worth noting that we are the first to propose the GiG framework from the superpixel point and the GiGCN scheme for HSI classification. Experiment results on four benchmark datasets demonstrate that our proposed method is effective and feasible for HSI classification with limited labeled samples. For study replication, the code developed for this study is available at https://github.com/ShuGuoJ/GiGCN.git .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
niuniu发布了新的文献求助10
2秒前
SciGPT应助科研通管家采纳,获得10
3秒前
所所应助科研通管家采纳,获得10
3秒前
3秒前
大个应助FAYE采纳,获得10
7秒前
niuniu完成签到,获得积分10
15秒前
17秒前
19秒前
FAYE发布了新的文献求助10
23秒前
烟花应助FAYE采纳,获得10
37秒前
41秒前
1分钟前
气945发布了新的文献求助10
1分钟前
1分钟前
taster完成签到,获得积分10
1分钟前
1分钟前
甜甜纸飞机完成签到 ,获得积分10
1分钟前
2分钟前
甜甜的紫菜完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
matrixu完成签到,获得积分10
2分钟前
无花果应助hyc采纳,获得10
2分钟前
科研通AI6应助有趣的银采纳,获得10
2分钟前
星辰大海应助有趣的银采纳,获得10
2分钟前
2分钟前
3分钟前
caca完成签到,获得积分0
3分钟前
思源应助凉水采纳,获得10
3分钟前
花呗发布了新的文献求助10
3分钟前
3分钟前
pucca完成签到 ,获得积分10
3分钟前
凉水发布了新的文献求助10
3分钟前
凉水完成签到,获得积分10
3分钟前
花呗完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
4分钟前
单薄的蓝天完成签到,获得积分10
4分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Fermented Coffee Market 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5232636
求助须知:如何正确求助?哪些是违规求助? 4401913
关于积分的说明 13699440
捐赠科研通 4268297
什么是DOI,文献DOI怎么找? 2342513
邀请新用户注册赠送积分活动 1339514
关于科研通互助平台的介绍 1296180