亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Weakly supervised deep learning for prediction of treatment effectiveness on ovarian cancer from histopathology images

贝伐单抗 医学 卵巢癌 揭穿 卵巢癌 化疗 癌症 肿瘤科 组织病理学 内科学 H&E染色 病理 免疫组织化学
作者
Ching‐Wei Wang,Cheng‐Chang Chang,Yu‐Ching Lee,Yi‐Jia Lin,Shih-Chang Lo,Po-Chao Hsu,Yi-An Liou,Chih‐Hung Wang,Tai‐Kuang Chao
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier]
卷期号:99: 102093-102093 被引量:44
标识
DOI:10.1016/j.compmedimag.2022.102093
摘要

Despite the progress made during the last two decades in the surgery and chemotherapy of ovarian cancer, more than 70 % of advanced patients are with recurrent cancer and decease. Surgical debulking of tumors following chemotherapy is the conventional treatment for advanced carcinoma, but patients with such treatment remain at great risk for recurrence and developing drug resistance, and only about 30 % of the women affected will be cured. Bevacizumab is a humanized monoclonal antibody, which blocks VEGF signaling in cancer, inhibits angiogenesis and causes tumor shrinkage, and has been recently approved by FDA as a monotherapy for advanced ovarian cancer in combination with chemotherapy. Considering the cost, potential toxicity, and finding that only a portion of patients will benefit from these drugs, the identification of new predictive method for the treatment of ovarian cancer remains an urgent unmet medical need. In this study, we develop weakly supervised deep learning approaches to accurately predict therapeutic effect for bevacizumab of ovarian cancer patients from histopathological hematoxylin and eosin stained whole slide images, without any pathologist-provided locally annotated regions. To the authors’ best knowledge, this is the first model demonstrated to be effective for prediction of the therapeutic effect of patients with epithelial ovarian cancer to bevacizumab. Quantitative evaluation of a whole section dataset shows that the proposed method achieves high accuracy, 0.882 ± 0.06; precision, 0.921 ± 0.04, recall, 0.912 ± 0.03; F-measure, 0.917 ± 0.07 using 5-fold cross validation and outperforms two state-of-the art deep learning approaches Coudray et al. (2018), Campanella et al. (2019). For an independent TMA testing set, the three proposed methods obtain promising results with high recall (sensitivity) 0.946, 0.893 and 0.964, respectively. The results suggest that the proposed method could be useful for guiding treatment by assisting in filtering out patients without positive therapeutic response to suffer from further treatments while keeping patients with positive response in the treatment process. Furthermore, according to the statistical analysis of the Cox Proportional Hazards Model, patients who were predicted to be invalid by the proposed model had a very high risk of cancer recurrence (hazard ratio = 13.727) than patients predicted to be effective with statistical signifcance (p < 0.05).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助yyh采纳,获得10
6秒前
17秒前
18秒前
培培完成签到 ,获得积分10
19秒前
yyh发布了新的文献求助10
22秒前
聪明的黑猫完成签到 ,获得积分10
28秒前
39秒前
1分钟前
1分钟前
早日发文章完成签到,获得积分10
1分钟前
1分钟前
顏泰楊完成签到,获得积分10
1分钟前
1分钟前
Tales完成签到 ,获得积分10
2分钟前
OhHH完成签到 ,获得积分10
2分钟前
2分钟前
不萌不zs发布了新的文献求助10
2分钟前
VDC应助科研通管家采纳,获得30
3分钟前
VDC应助科研通管家采纳,获得30
3分钟前
VDC应助科研通管家采纳,获得30
3分钟前
fairy完成签到 ,获得积分10
3分钟前
3分钟前
在水一方应助单纯的映真采纳,获得10
3分钟前
脑洞疼应助研友_R2D2采纳,获得10
4分钟前
4分钟前
欣欣完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
研友_R2D2发布了新的文献求助10
4分钟前
5分钟前
VDC应助科研通管家采纳,获得30
5分钟前
VDC应助科研通管家采纳,获得30
5分钟前
VDC应助科研通管家采纳,获得30
5分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
5分钟前
5分钟前
鱿鱼起司发布了新的文献求助10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482463
求助须知:如何正确求助?哪些是违规求助? 4583236
关于积分的说明 14389068
捐赠科研通 4512329
什么是DOI,文献DOI怎么找? 2472848
邀请新用户注册赠送积分活动 1459082
关于科研通互助平台的介绍 1432553