Weakly supervised deep learning for prediction of treatment effectiveness on ovarian cancer from histopathology images

贝伐单抗 医学 卵巢癌 揭穿 卵巢癌 化疗 癌症 肿瘤科 组织病理学 内科学 H&E染色 病理 免疫组织化学
作者
Ching‐Wei Wang,Cheng‐Chang Chang,Yu‐Ching Lee,Yi‐Jia Lin,Shih-Chang Lo,Po-Chao Hsu,Yi-An Liou,Chih‐Hung Wang,Tai‐Kuang Chao
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier]
卷期号:99: 102093-102093 被引量:44
标识
DOI:10.1016/j.compmedimag.2022.102093
摘要

Despite the progress made during the last two decades in the surgery and chemotherapy of ovarian cancer, more than 70 % of advanced patients are with recurrent cancer and decease. Surgical debulking of tumors following chemotherapy is the conventional treatment for advanced carcinoma, but patients with such treatment remain at great risk for recurrence and developing drug resistance, and only about 30 % of the women affected will be cured. Bevacizumab is a humanized monoclonal antibody, which blocks VEGF signaling in cancer, inhibits angiogenesis and causes tumor shrinkage, and has been recently approved by FDA as a monotherapy for advanced ovarian cancer in combination with chemotherapy. Considering the cost, potential toxicity, and finding that only a portion of patients will benefit from these drugs, the identification of new predictive method for the treatment of ovarian cancer remains an urgent unmet medical need. In this study, we develop weakly supervised deep learning approaches to accurately predict therapeutic effect for bevacizumab of ovarian cancer patients from histopathological hematoxylin and eosin stained whole slide images, without any pathologist-provided locally annotated regions. To the authors’ best knowledge, this is the first model demonstrated to be effective for prediction of the therapeutic effect of patients with epithelial ovarian cancer to bevacizumab. Quantitative evaluation of a whole section dataset shows that the proposed method achieves high accuracy, 0.882 ± 0.06; precision, 0.921 ± 0.04, recall, 0.912 ± 0.03; F-measure, 0.917 ± 0.07 using 5-fold cross validation and outperforms two state-of-the art deep learning approaches Coudray et al. (2018), Campanella et al. (2019). For an independent TMA testing set, the three proposed methods obtain promising results with high recall (sensitivity) 0.946, 0.893 and 0.964, respectively. The results suggest that the proposed method could be useful for guiding treatment by assisting in filtering out patients without positive therapeutic response to suffer from further treatments while keeping patients with positive response in the treatment process. Furthermore, according to the statistical analysis of the Cox Proportional Hazards Model, patients who were predicted to be invalid by the proposed model had a very high risk of cancer recurrence (hazard ratio = 13.727) than patients predicted to be effective with statistical signifcance (p < 0.05).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bamboo完成签到,获得积分10
1秒前
稳如老狗完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助30
2秒前
科研通AI6.1应助秦汇博采纳,获得10
2秒前
hahada完成签到,获得积分10
3秒前
阿良完成签到 ,获得积分10
3秒前
暖te完成签到 ,获得积分10
3秒前
冯冯完成签到 ,获得积分10
4秒前
zxcvbnm完成签到 ,获得积分10
4秒前
FYQ发布了新的文献求助10
4秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
西卡完成签到,获得积分10
6秒前
8秒前
翊嘉完成签到 ,获得积分10
8秒前
JodieZhu发布了新的文献求助30
9秒前
Haley完成签到,获得积分10
10秒前
冷傲火龙果完成签到,获得积分10
11秒前
12秒前
不发一区不改名完成签到 ,获得积分10
12秒前
13秒前
丰富的浩阑完成签到,获得积分10
13秒前
poplin完成签到 ,获得积分10
14秒前
高高的夕阳完成签到,获得积分10
14秒前
西卡发布了新的文献求助10
15秒前
平淡尔琴完成签到,获得积分10
15秒前
tana98906完成签到 ,获得积分10
16秒前
17秒前
Yi羿完成签到 ,获得积分10
23秒前
aaaaa完成签到,获得积分20
24秒前
向往完成签到 ,获得积分10
25秒前
ZZ应助Gumiano采纳,获得10
25秒前
轻松的越彬完成签到 ,获得积分10
27秒前
27秒前
槿裡完成签到 ,获得积分10
28秒前
传奇3应助哈哈哈采纳,获得10
29秒前
Karry完成签到 ,获得积分0
30秒前
量子星尘发布了新的文献求助10
30秒前
思源应助怡然可乐采纳,获得10
30秒前
唐唐完成签到,获得积分10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5733199
求助须知:如何正确求助?哪些是违规求助? 5347039
关于积分的说明 15323294
捐赠科研通 4878359
什么是DOI,文献DOI怎么找? 2621169
邀请新用户注册赠送积分活动 1570293
关于科研通互助平台的介绍 1527208