Weakly supervised deep learning for prediction of treatment effectiveness on ovarian cancer from histopathology images

贝伐单抗 医学 卵巢癌 揭穿 卵巢癌 化疗 癌症 肿瘤科 组织病理学 内科学 H&E染色 病理 免疫组织化学
作者
Ching‐Wei Wang,Cheng‐Chang Chang,Yu‐Ching Lee,Yi‐Jia Lin,Shih-Chang Lo,Po-Chao Hsu,Yi-An Liou,Chih‐Hung Wang,Tai‐Kuang Chao
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier BV]
卷期号:99: 102093-102093 被引量:44
标识
DOI:10.1016/j.compmedimag.2022.102093
摘要

Despite the progress made during the last two decades in the surgery and chemotherapy of ovarian cancer, more than 70 % of advanced patients are with recurrent cancer and decease. Surgical debulking of tumors following chemotherapy is the conventional treatment for advanced carcinoma, but patients with such treatment remain at great risk for recurrence and developing drug resistance, and only about 30 % of the women affected will be cured. Bevacizumab is a humanized monoclonal antibody, which blocks VEGF signaling in cancer, inhibits angiogenesis and causes tumor shrinkage, and has been recently approved by FDA as a monotherapy for advanced ovarian cancer in combination with chemotherapy. Considering the cost, potential toxicity, and finding that only a portion of patients will benefit from these drugs, the identification of new predictive method for the treatment of ovarian cancer remains an urgent unmet medical need. In this study, we develop weakly supervised deep learning approaches to accurately predict therapeutic effect for bevacizumab of ovarian cancer patients from histopathological hematoxylin and eosin stained whole slide images, without any pathologist-provided locally annotated regions. To the authors’ best knowledge, this is the first model demonstrated to be effective for prediction of the therapeutic effect of patients with epithelial ovarian cancer to bevacizumab. Quantitative evaluation of a whole section dataset shows that the proposed method achieves high accuracy, 0.882 ± 0.06; precision, 0.921 ± 0.04, recall, 0.912 ± 0.03; F-measure, 0.917 ± 0.07 using 5-fold cross validation and outperforms two state-of-the art deep learning approaches Coudray et al. (2018), Campanella et al. (2019). For an independent TMA testing set, the three proposed methods obtain promising results with high recall (sensitivity) 0.946, 0.893 and 0.964, respectively. The results suggest that the proposed method could be useful for guiding treatment by assisting in filtering out patients without positive therapeutic response to suffer from further treatments while keeping patients with positive response in the treatment process. Furthermore, according to the statistical analysis of the Cox Proportional Hazards Model, patients who were predicted to be invalid by the proposed model had a very high risk of cancer recurrence (hazard ratio = 13.727) than patients predicted to be effective with statistical signifcance (p < 0.05).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zyj发布了新的文献求助10
1秒前
2秒前
2秒前
蓝蜻蜓发布了新的文献求助10
4秒前
4秒前
烟花应助皮崇知采纳,获得10
5秒前
5秒前
大椒完成签到 ,获得积分10
6秒前
6秒前
Aeae发布了新的文献求助10
7秒前
7秒前
xuyang完成签到,获得积分20
8秒前
8秒前
10秒前
10秒前
12秒前
12秒前
Homura发布了新的文献求助10
12秒前
晨屿发布了新的文献求助10
12秒前
抗体药物偶联完成签到,获得积分10
12秒前
李爱国应助人间打气筒采纳,获得10
12秒前
中和皇极应助健哥采纳,获得20
14秒前
15秒前
醉熏的鑫发布了新的文献求助10
15秒前
皮崇知发布了新的文献求助10
16秒前
pengyh8完成签到 ,获得积分10
18秒前
18秒前
20秒前
Aeae完成签到,获得积分20
20秒前
22秒前
JamesPei应助醉熏的鑫采纳,获得10
22秒前
23秒前
zjs发布了新的文献求助10
23秒前
烟花应助晨屿采纳,获得10
24秒前
24秒前
26秒前
小彭发布了新的文献求助10
27秒前
zhaoty完成签到,获得积分10
28秒前
FashionBoy应助子訡采纳,获得10
28秒前
卡皮巴拉发布了新的文献求助10
29秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993430
求助须知:如何正确求助?哪些是违规求助? 3534082
关于积分的说明 11264604
捐赠科研通 3273901
什么是DOI,文献DOI怎么找? 1806170
邀请新用户注册赠送积分活动 883026
科研通“疑难数据库(出版商)”最低求助积分说明 809662