Weakly supervised deep learning for prediction of treatment effectiveness on ovarian cancer from histopathology images

贝伐单抗 医学 卵巢癌 揭穿 卵巢癌 化疗 癌症 肿瘤科 组织病理学 内科学 H&E染色 病理 免疫组织化学
作者
Ching‐Wei Wang,Cheng‐Chang Chang,Yu‐Ching Lee,Yi‐Jia Lin,Shih-Chang Lo,Po-Chao Hsu,Yi-An Liou,Chih‐Hung Wang,Tai‐Kuang Chao
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier]
卷期号:99: 102093-102093 被引量:35
标识
DOI:10.1016/j.compmedimag.2022.102093
摘要

Despite the progress made during the last two decades in the surgery and chemotherapy of ovarian cancer, more than 70 % of advanced patients are with recurrent cancer and decease. Surgical debulking of tumors following chemotherapy is the conventional treatment for advanced carcinoma, but patients with such treatment remain at great risk for recurrence and developing drug resistance, and only about 30 % of the women affected will be cured. Bevacizumab is a humanized monoclonal antibody, which blocks VEGF signaling in cancer, inhibits angiogenesis and causes tumor shrinkage, and has been recently approved by FDA as a monotherapy for advanced ovarian cancer in combination with chemotherapy. Considering the cost, potential toxicity, and finding that only a portion of patients will benefit from these drugs, the identification of new predictive method for the treatment of ovarian cancer remains an urgent unmet medical need. In this study, we develop weakly supervised deep learning approaches to accurately predict therapeutic effect for bevacizumab of ovarian cancer patients from histopathological hematoxylin and eosin stained whole slide images, without any pathologist-provided locally annotated regions. To the authors’ best knowledge, this is the first model demonstrated to be effective for prediction of the therapeutic effect of patients with epithelial ovarian cancer to bevacizumab. Quantitative evaluation of a whole section dataset shows that the proposed method achieves high accuracy, 0.882 ± 0.06; precision, 0.921 ± 0.04, recall, 0.912 ± 0.03; F-measure, 0.917 ± 0.07 using 5-fold cross validation and outperforms two state-of-the art deep learning approaches Coudray et al. (2018), Campanella et al. (2019). For an independent TMA testing set, the three proposed methods obtain promising results with high recall (sensitivity) 0.946, 0.893 and 0.964, respectively. The results suggest that the proposed method could be useful for guiding treatment by assisting in filtering out patients without positive therapeutic response to suffer from further treatments while keeping patients with positive response in the treatment process. Furthermore, according to the statistical analysis of the Cox Proportional Hazards Model, patients who were predicted to be invalid by the proposed model had a very high risk of cancer recurrence (hazard ratio = 13.727) than patients predicted to be effective with statistical signifcance (p < 0.05).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
GAO发布了新的文献求助10
刚刚
FashionBoy应助野椒搞科研采纳,获得10
2秒前
2秒前
杰杰发布了新的文献求助10
2秒前
阳光海云应助huapeng采纳,获得10
3秒前
hugeyoung发布了新的文献求助10
4秒前
aDou发布了新的文献求助10
7秒前
7秒前
7秒前
huapeng完成签到,获得积分10
8秒前
慕青应助dpp采纳,获得10
8秒前
11秒前
fifteen发布了新的文献求助10
11秒前
麻辣烫加麻加辣完成签到,获得积分10
12秒前
13秒前
小萝莉发布了新的文献求助10
13秒前
Yultuz友发布了新的文献求助10
13秒前
13秒前
NexusExplorer应助一只大老蹬采纳,获得10
14秒前
朝霞发布了新的文献求助20
15秒前
留胡子的胡完成签到,获得积分10
15秒前
知有完成签到 ,获得积分10
16秒前
虚心黄蜂发布了新的文献求助10
17秒前
Dagong-xz完成签到,获得积分10
17秒前
17秒前
Gin发布了新的文献求助10
18秒前
18秒前
Birdy Young完成签到,获得积分20
19秒前
wan完成签到 ,获得积分10
20秒前
20秒前
21秒前
月月呀发布了新的文献求助10
21秒前
Yultuz友完成签到,获得积分10
21秒前
22秒前
清风徐来发布了新的文献求助10
22秒前
可爱书翠发布了新的文献求助50
24秒前
24秒前
一只大老蹬完成签到,获得积分10
24秒前
Birdy Young发布了新的文献求助10
25秒前
25秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160857
求助须知:如何正确求助?哪些是违规求助? 2812058
关于积分的说明 7894301
捐赠科研通 2470980
什么是DOI,文献DOI怎么找? 1315808
科研通“疑难数据库(出版商)”最低求助积分说明 631003
版权声明 602068