已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Automated Assessment of Reinforced Concrete Elements using Ground Penetrating Radar

探地雷达 钢筋 计算机科学 卷积神经网络 无损检测 图像处理 自动化 人工智能 信号处理 雷达 人工神经网络
作者
Sai Teja Kuchipudi,Debdutta Ghosh,Hina Gupta
出处
期刊:Automation in Construction [Elsevier]
卷期号:140: 104378-104378
标识
DOI:10.1016/j.autcon.2022.104378
摘要

Ground Penetrating Radar (GPR) has been evolving as a reliable Nondestructive tool for structural concrete inspections. Leveraging Electromagnetic waves enables the technique to be swift and advantageous for internal imaging of anomalies. With rebar and defect detections being the primary objective, post-processing the image/signal data for decluttered output is one of the major concerns. Availability of multiple GPR processing techniques on diverse applications make the appropriate technique selection a tough task. Traditionally structures were inspected for underlying defects and manually judged based on the semantic interpretation of radar signatures. However, cognitive decision making after processing enormous datasets can be time consuming and error prone. With advances in Computer Vision, there has been a surge in the number of neural architectures applied for automated object detection. This paper attempts to address the gray areas in technique optimization and automation by reviewing various GPR based manual detection models and their transition towards automated detection. Evolution of signal/image processing algorithms from manual migration-based imaging to automated object detection deploying Convolutional Neural Networks (CNNs) has been presented. This study also outlines various insights, challenges, and avenues for future research in the domain of non-invasive structural diagnostics using the GPR. • Comparison of multiple GPR processing techniques for detection of prevailing defects in concrete. • Reviewed various neural architectures for automatic detection of rebars and internal flaws in concrete. • Performance comparison of deep networks for rebars and defects detection in reinforced concrete. • Highlighted works on fusion of various NDE techniques with GPR. • Discussion on various factors affecting detectability of targets under the radar.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夏紊完成签到 ,获得积分10
1秒前
蒂蒂不知道完成签到,获得积分10
1秒前
aafrr完成签到 ,获得积分10
1秒前
小糖发布了新的文献求助10
2秒前
3秒前
LTY发布了新的文献求助10
3秒前
CodeCraft应助大妈采纳,获得10
5秒前
6秒前
asd关闭了asd文献求助
6秒前
传奇3应助moonlin采纳,获得10
6秒前
xxxx发布了新的文献求助10
8秒前
8秒前
10秒前
cmy发布了新的文献求助10
10秒前
烟花应助dyh0521采纳,获得10
10秒前
cocolu应助abner采纳,获得200
11秒前
是小王ya发布了新的文献求助10
12秒前
12秒前
12秒前
13秒前
14秒前
今后应助丁梦阳采纳,获得10
14秒前
轻松的芯发布了新的文献求助10
15秒前
Yun yun发布了新的文献求助10
16秒前
传统的萝发布了新的文献求助10
16秒前
18秒前
妮妮发布了新的文献求助20
19秒前
19秒前
22秒前
dyh0521发布了新的文献求助10
24秒前
元烨华发布了新的文献求助10
24秒前
是小王ya完成签到,获得积分10
25秒前
嗷嗷发布了新的文献求助10
26秒前
27秒前
27秒前
彭于晏应助RR采纳,获得10
30秒前
所所应助xxxx采纳,获得10
31秒前
31秒前
哇咔咔发布了新的文献求助10
32秒前
小杰杰发布了新的文献求助10
32秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455443
求助须知:如何正确求助?哪些是违规求助? 3050671
关于积分的说明 9022288
捐赠科研通 2739279
什么是DOI,文献DOI怎么找? 1502628
科研通“疑难数据库(出版商)”最低求助积分说明 694549
邀请新用户注册赠送积分活动 693350