Automated Assessment of Reinforced Concrete Elements using Ground Penetrating Radar

探地雷达 钢筋 计算机科学 卷积神经网络 无损检测 图像处理 自动化 人工智能 信号处理 雷达 人工神经网络
作者
Sai Teja Kuchipudi,Debdutta Ghosh,Hina Gupta
出处
期刊:Automation in Construction [Elsevier BV]
卷期号:140: 104378-104378
标识
DOI:10.1016/j.autcon.2022.104378
摘要

Ground Penetrating Radar (GPR) has been evolving as a reliable Nondestructive tool for structural concrete inspections. Leveraging Electromagnetic waves enables the technique to be swift and advantageous for internal imaging of anomalies. With rebar and defect detections being the primary objective, post-processing the image/signal data for decluttered output is one of the major concerns. Availability of multiple GPR processing techniques on diverse applications make the appropriate technique selection a tough task. Traditionally structures were inspected for underlying defects and manually judged based on the semantic interpretation of radar signatures. However, cognitive decision making after processing enormous datasets can be time consuming and error prone. With advances in Computer Vision, there has been a surge in the number of neural architectures applied for automated object detection. This paper attempts to address the gray areas in technique optimization and automation by reviewing various GPR based manual detection models and their transition towards automated detection. Evolution of signal/image processing algorithms from manual migration-based imaging to automated object detection deploying Convolutional Neural Networks (CNNs) has been presented. This study also outlines various insights, challenges, and avenues for future research in the domain of non-invasive structural diagnostics using the GPR. • Comparison of multiple GPR processing techniques for detection of prevailing defects in concrete. • Reviewed various neural architectures for automatic detection of rebars and internal flaws in concrete. • Performance comparison of deep networks for rebars and defects detection in reinforced concrete. • Highlighted works on fusion of various NDE techniques with GPR. • Discussion on various factors affecting detectability of targets under the radar.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
PangShuting发布了新的文献求助10
1秒前
菲菲发布了新的文献求助10
1秒前
CipherSage应助佳期采纳,获得10
1秒前
LLLLLispector关注了科研通微信公众号
1秒前
Jasper应助彩色垣采纳,获得10
2秒前
华仔应助唯梦采纳,获得10
2秒前
孙燕应助唯梦采纳,获得80
2秒前
3秒前
猪猪hero发布了新的文献求助10
3秒前
寒风完成签到,获得积分10
3秒前
ziyuan发布了新的文献求助30
4秒前
上山打老虎完成签到,获得积分10
4秒前
schuang完成签到,获得积分10
4秒前
烟花应助单薄的日记本采纳,获得10
4秒前
5秒前
二区完成签到,获得积分20
6秒前
早早完成签到,获得积分10
6秒前
6秒前
7秒前
黑色卡布奇诺完成签到,获得积分10
7秒前
打打应助lili487采纳,获得10
7秒前
8秒前
嗯_好发布了新的文献求助10
8秒前
9秒前
灰太狼大王完成签到,获得积分10
9秒前
三九发布了新的文献求助10
9秒前
仁爱的汉堡完成签到,获得积分10
10秒前
新司机发布了新的文献求助10
11秒前
SciGPT应助颿曦采纳,获得10
11秒前
xhf发布了新的文献求助10
12秒前
快乐听南完成签到,获得积分10
12秒前
ly发布了新的文献求助10
12秒前
第五明月完成签到,获得积分10
12秒前
上山石头发布了新的文献求助10
12秒前
13秒前
13秒前
leyellows完成签到 ,获得积分10
13秒前
14秒前
14秒前
17秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009979
求助须知:如何正确求助?哪些是违规求助? 3550041
关于积分的说明 11304472
捐赠科研通 3284482
什么是DOI,文献DOI怎么找? 1810684
邀请新用户注册赠送积分活动 886503
科研通“疑难数据库(出版商)”最低求助积分说明 811412